TopicNeuroscience

mosaic mutations

Latest

SeminarNeuroscienceRecording

Brain mosaicism in epileptogenic cortical malformations

Stéphanie Baulac
ICM Paris
Feb 1, 2023

Focal Cortical Dysplasia (FCD) is the most common focal cortical malformation leading to intractable childhood focal epilepsy. In recent years, we and others have shown that FCD type II is caused by mosaic mutations in genes within the PI3K-AKT-mTOR-signaling pathway. Hyperactivation of the mTOR pathway accounts for neuropathological abnormalities and seizure occurrence in FCD. We further showed from human surgical FCDII tissue that epileptiform activity correlates with the density of mutated dysmorphic neurons, supporting their pro-epileptogenic role. The level of mosaicism, as defined by variant allele frequency (VAF) is thought to correlate with the size and regional brain distribution of the lesion such that when a somatic mutation occurs early during the cortical development, the dysplastic area is smaller than if it occurs later. Novel approaches based on the detection of cell-free DNA from the CSF and from trace tissue adherent to SEEG electrodes promise future opportunities for genetic testing during the presurgical evaluation of refractory epilepsy patients or in those that are not eligible for surgery. In utero-based electroporation mouse models allow to express somatic mutation during neurodevelopment and recapitulate most neuropathological and clinical features of FCDII, establishing relevant preclinical mouse models for developing precision medicine strategies.

SeminarNeuroscienceRecording

Malformation of cortical development: the genesis of epileptogenic networks

Alfonso Represa
INSERM, Institut de Neurobiologie de la Méditerranée
Jun 2, 2021

Malformations of cortical development (MCDs) result from alterations of one or combined developmental steps, including progenitors proliferation, neuronal migration and differentiation. They are important cause of childhood epilepsy and frequently associate cognitive deficits and behavioral alterations. Though the genetic basis of MCDs have known prominent progress during the past decade, including the identification of somatic, mosaic mutations responsible for focal MCDs, the pathophysiological mechanisms linking malformations to epileptogenesis remain elusive. In this seminar I will present data from my team and from the literature addressing this topic in two different MCDs types, the subcortical band heterotopia as a model of cortical migration defect and mTOR- dependent MCDs , that characterize by cortical dyslamination and neuronal differentiation defects.

mosaic mutations coverage

2 items

Seminar2

Share your knowledge

Know something about mosaic mutations? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how mosaic mutations research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.