← Back

Mouse Models

Topic spotlight
TopicNeuro

mouse models

Discover seminars, jobs, and research tagged with mouse models across Neuro.
45 curated items45 Seminars
Updated over 1 year ago
45 items · mouse models

Latest

45 results
SeminarNeuroscience

Investigating dynamiCa++l mechanisms underlying cortical development and disease

Georgia Panagiotakos
Icahn School of Medicine at Mount Sinai
May 8, 2024
SeminarNeuroscience

Investigating activity-dependent processes during cortical neuronal assembly in development and disease

Simona Lodato
Humanitas University
Mar 20, 2024
SeminarNeuroscienceRecording

Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer’s disease

Daniel S. Whittaker
UCSD
Nov 9, 2023
SeminarNeuroscience

X-linked mosaicism and behavioral heterogeneity in Rett syndrome

Keerthi Krishnan
University of Tennessee, Knoxville
Nov 1, 2023
SeminarNeuroscience

Circuit mechanisms of attention dysfunction in Scn8a+/- mice: implications for epilepsy and neurodevelopmental disorders

Brielle Ferguson
Harvard Medical School
May 17, 2023
SeminarNeuroscienceRecording

Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease

Sebastiaan de Schepper
University College London
May 16, 2023
SeminarNeuroscienceRecording

Brain mosaicism in epileptogenic cortical malformations

Stéphanie Baulac
ICM Paris
Feb 1, 2023

Focal Cortical Dysplasia (FCD) is the most common focal cortical malformation leading to intractable childhood focal epilepsy. In recent years, we and others have shown that FCD type II is caused by mosaic mutations in genes within the PI3K-AKT-mTOR-signaling pathway. Hyperactivation of the mTOR pathway accounts for neuropathological abnormalities and seizure occurrence in FCD. We further showed from human surgical FCDII tissue that epileptiform activity correlates with the density of mutated dysmorphic neurons, supporting their pro-epileptogenic role. The level of mosaicism, as defined by variant allele frequency (VAF) is thought to correlate with the size and regional brain distribution of the lesion such that when a somatic mutation occurs early during the cortical development, the dysplastic area is smaller than if it occurs later. Novel approaches based on the detection of cell-free DNA from the CSF and from trace tissue adherent to SEEG electrodes promise future opportunities for genetic testing during the presurgical evaluation of refractory epilepsy patients or in those that are not eligible for surgery. In utero-based electroporation mouse models allow to express somatic mutation during neurodevelopment and recapitulate most neuropathological and clinical features of FCDII, establishing relevant preclinical mouse models for developing precision medicine strategies.

SeminarNeuroscience

How do Astrocytes Sculpt Synaptic Circuits?

Cagla Eroglu
Duke University
Jan 11, 2023
SeminarNeuroscience

From symptoms to circuits in Fragile X syndrome

Carlos Portera-Cailliau
University of California, Los Angeles
Dec 21, 2022
SeminarNeuroscience

Dysregulated Translation in Fragile X Syndrome

Eric Klann
New York University
Nov 9, 2022
SeminarNeuroscienceRecording

Hypothalamic episode generators underlying the neural control of fertility

Allan Herbison
Department of Physiology, Development and Neuroscience, University of Cambridge
Nov 8, 2022

The hypothalamus controls diverse homeostatic functions including fertility. Neural episode generators are required to drive the intermittent pulsatile and surge profiles of reproductive hormone secretion that control gonadal function. Studies in genetic mouse models have been fundamental in defining the neural circuits forming these central pattern generators and the full range of in vitro and in vivo optogenetic and chemogenetic methodologies have enabled investigation into their mechanism of action. The seminar will outline studies defining the hypothalamic “GnRH pulse generator network” and current understanding of its operation to drive pulsatile hormone secretion.

SeminarNeuroscience

Counteracting epigenetic mechanisms in autism spectrum disorders

Sofia Lizarraga
University of South Carolina
Oct 12, 2022
SeminarNeuroscience

Epigenome regulation in neocortex expansion and generation of neuronal subtypes

Tran Tuoc, PhD
Ruhruniversität-Bochum, Humangenetik
Aug 24, 2022

Evolutionarily, the expansion of the human neocortex accounts for many of the unique cognitive abilities of humans. This expansion appears to reflect the increased proliferative potential of basal progenitors (BPs) in mammalian evolution. Further cortical progenitors generate both glutamatergic excitatory neurons (ENs) and GABAergic inhibitory interneurons (INs) in human cortex, whereas they produce exclusively ENs in rodents. The increased proliferative capacity and neuronal subtype generation of cortical progenitors in mammalian evolution may have evolved through epigenetic alterations. However, whether or how the epigenome in cortical progenitors differs between humans and other species is unknown. Here, we report that histone H3 acetylation is a key epigenetic regulation in BP profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in amplification, neuronal subtype generation and cortical expansion. Through epigenetic profiling of sorted BPs, we show that H3K9 acetylation is low in murine BPs and high in human BPs. Elevated H3K9ac preferentially increases BP proliferation, increasing the size and folding of the normally smooth mouse neocortex. Furthermore, we found that the elevated H3 acetylation activates expression of IN genes in in developing mouse cortex and promote proliferation of IN progenitor-like cells in cortex of Pax6 mutant mouse models. Mechanistically, H3K9ac drives the BP amplification and proliferation of these IN progenitor-like cells by increasing expression of the evolutionarily regulated gene, TRNP1. Our findings demonstrate a previously unknown mechanism that controls neocortex expansion and generation of neuronal subtypes. Keywords: Cortical development, neurogenesis, basal progenitors, cortical size, gyrification, excitatory neuron, inhibitory interneuron, epigenetic profiling, epigenetic regulation, H3 acetylation, H3K9ac, TRNP1, PAX6

SeminarNeuroscience

Role of ASD risk genes on maturation of frontal-sensory cognitive control circuit

Hiro Morishita
Icahn School of Medicine at Mount Sinai
Jul 27, 2022
SeminarNeuroscience

Memory, learning to learn, and control of cognitive representations

Andre Fenton
New York University
Apr 20, 2022
SeminarNeuroscience

Studying cortical development through the lens of autism spectrum disorders

Gaia Novarino
Institute of Science and Technology Austria
Feb 23, 2022
SeminarNeuroscience

Reward system function and dysfunction in Autism Spectrum Disorders

Camilla Bellone
University of Geneva
Feb 9, 2022
SeminarNeuroscienceRecording

Genetics of migraine and the use of genetic mouse models

Arn van den Maagdenberg
Departments of Human Genetics and Neurology, Leiden University Medical Centre, Leiden, the Netherlands
Jan 27, 2022
SeminarNeuroscience

Translational Biomarkers in Preclinical Models of Neurodevelopmental Disorders

Jill Silverman
UC Davis
Jan 26, 2022
SeminarNeuroscience

Synaptic alterations in the striatum drive ASD-related behaviors in mice

Helen Bateup
UC Berkeley
Jan 12, 2022
SeminarNeuroscienceRecording

Mechanisms of sleep-seizure interactions in tuberous sclerosis and other mTORpathies

Michael Wong
Washigton University
Jan 5, 2022

An intriguing, relatively unexplored therapeutic avenue to investigate epilepsy is the interaction of sleep mechanisms and seizures. Multiple lines of clinical observations suggest a strong, bi-directional relationship between epilepsy and sleep. Epilepsy and sleep disorders are common comorbidities. Seizures occur more commonly in sleep in many types of epilepsy, and in turn, seizures can cause disrupted sleep. Sudden unexplained death in epilepsy (SUDEP) is strongly associated with sleep. The biological mechanisms underlying this relationship between seizures and sleep are poorly understood, but if better delineated, could offer novel therapeutic approaches to treating both epilepsy and sleep disorders. In this presentation, I will explore this sleep-seizure relationship in mouse models of epilepsy. First, I will present general approaches for performing detailed longitudinal sleep and vigilance state analysis in mice, including pre-weanling neonatal mice. I will then discuss recent data from my laboratory demonstrating an abnormal sleep phenotype in a mouse model of the genetic epilepsy, tuberous sclerosis complex (TSC), and its relationship to seizures. The potential mechanistic basis of sleep abnormalities and sleep-seizure interactions in this TSC model will be investigated, focusing on the role of the mechanistic target of rapamycin (mTOR) pathway and hypothalamic orexin, with potential therapeutic applications of mTOR inhibitors and orexin antagonists. Finally, similar sleep-seizure interactions and mechanisms will be extended to models of acquired epilepsy due to status epilepticus-related brain injury.

SeminarNeuroscience

The effects of maternal immune activation on early development in an outbred strain of mice

Tamara Franklin
Dalhousie University
Nov 24, 2021
SeminarNeuroscience

Stem cell approaches to understand acquired and genetic epilepsies

Jenny Hsieh
University of Texas at San Antonio
Nov 17, 2021

The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.

SeminarNeuroscience

Gut-brain signaling as a driver of behavior and gene expression in a mouse model for autism spectrum disorder

Drew Kiraly
Icahn School of Medicine at Mount Sinai
Nov 10, 2021
SeminarNeuroscience

Behavioral phenotyping strategies for mouse models of neurodevelopmental disorders

Jacqueline N. Crawley
MIND Institute. Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
Sep 30, 2021
SeminarNeuroscience

On the role of the ADNP gene in mice and man

Frank Kooy
U Antwerpen
Sep 29, 2021
SeminarNeuroscienceRecording

Pitt-Hopkins Syndrome, mouse models, neurodevelopment, therapeutics

Andrew Kennedy
Bates College
Sep 15, 2021
SeminarNeuroscience

(Dys)regulation of the social brain

Claudia Bagni
Universite de Lausanne
Jun 23, 2021
SeminarNeuroscienceRecording

A fresh look at the bird retina

Karin Dedek
University of Oldenburg
May 31, 2021

I am working on the vertebrate retina, with a main focus on the mouse and bird retina. Currently my work is focused on three major topics: Functional and molecular analysis of electrical synapses in the retina Circuitry and functional role of retinal interneurons: horizontal cells Circuitry for light-dependent magnetoreception in the bird retina Electrical synapses Electrical synapses (gap junctions) permit fast transmission of electrical signals and passage of metabolites by means of channels, which directly connect the cytoplasm of adjoining cells. A functional gap junction channel consists of two hemichannels (one provided by each of the cells), each comprised of a set of six protein subunits, termed connexins. These building blocks exist in a variety of different subtypes, and the connexin composition determines permeability and gating properties of a gap junction channel, thereby enabling electrical synapses to meet a diversity of physiological requirements. In the retina, various connexins are expressed in different cell types. We study the cellular distribution of different connexins as well as the modulation induced by transmitter action or change of ambient light levels, which leads to altered electrical coupling properties. We are also interested in exploiting them as therapeutic avenue for retinal degeneration diseases. Horizontal cells Horizontal cells receive excitatory input from photoreceptors and provide feedback inhibition to photoreceptors and feedforward inhibition to bipolar cells. Because of strong electrical coupling horizontal cells integrate the photoreceptor input over a wide area and are thought to contribute to the antagonistic organization of bipolar cell and ganglion cell receptive fields and to tune the photoreceptor–bipolar cell synapse with respect to the ambient light conditions. However, the extent to which this influence shapes retinal output is unclear, and we aim to elucidate the functional importance of horizontal cells for retinal signal processing by studying various transgenic mouse models. Retinal circuitry for light-dependent magnetoreception in the bird We are studying which neuronal cell types and pathways in the bird retina are involved in the processing of magnetic signals. Likely, magnetic information is detected in cryptochrome-expressing photoreceptors and leaves the retina through ganglion cell axons that project via the thalamofugal pathway to Cluster N, a part of the visual wulst essential for the avian magnetic compass. Thus, we aim to elucidate the synaptic connections and retinal signaling pathways from putatively magnetosensitive photoreceptors to thalamus-projecting ganglion cells in migratory birds using neuroanatomical and electrophysiological techniques.

SeminarNeuroscience

Dysregulation of mTOR Signaling Mediates Common Neurite and Migration Defects in Idiopathic and 16p11.2 Deletion Autism neural progenitors

Emanuel DiCicco-Bloom
Rutgers U
May 12, 2021
SeminarNeuroscience

Male-specific intracellular signaling and male bias in neurodevelopmental disorders

M Chiara Manzini
Rutgers U
Apr 28, 2021
SeminarNeuroscience

Targeting selective autophagy against neurodegenerative diseases

Ana Maria Cuervo
Albert Einstein College of Medicine, New York, USA
Apr 21, 2021

Protein quality control is essential for maintenance of a healthy and functional proteome that can attend the multiplicity of cellular functions. Failure of the systems that contribute to protein homeostasis, the so called proteostasis networks, have been identified in the pathogenesis of multiple neurodegenerative disorders and demonstrated to contribute to disease onset and progression. We are interested in autophagy, one of the components of the proteostasis network, and in the interplay of wo selective types of autophagy, chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI), with neurodegeneration. We have recently found that pathogenic proteins involved in common neurodegenerative conditions such as tauopathies or Parkinson’s disease, can exert a toxic effect in both types of selective types of autophagy compromising their functioning. We have now used mouse models with compromised CMA that support increased propagation of proteins such as tau and alpha-synuclein and an exacerbation of disease phenotype with aging. Conversely, genetic or chemical upregulation of CMA in this context of proteotoxicity slow down disease progression by facilitating effective intracellular removal of pathogenic proteins. Our findings highlight CMA and eMI as potential novel therapeutic targets against neurodegeneration.

SeminarNeuroscience

Sensory Processing and Arousal in Neurodevelopmental Disorders

Michela Fagiolini
Boston Children's Hospital
Apr 14, 2021
SeminarNeuroscience

Sex-Specific Brain Transcriptional Signatures in Human MDD and their Correlates in Mouse Models of Depression

Benoit Labonté
Université Laval & Centre de Recherche CERVO, Québec, Canada
Feb 12, 2021

Major depressive disorder (MDD) is a sexually dimorphic disease. This sexual dimorphism is believed to result from sex-specific molecular alterations affecting functional pathways regulating the capacity of men and women to cope with daily life stress differently. Transcriptional changes associated with epigenetic alterations have been observed in the brain of men and women with depression and similar changes have been reported in different animal models of stress-induced depressive-like behaviors. In fact, most of our knowledge of the biological basis of MDD is derived from studies of chronic stress models in rodents. However, while these models capture certain aspects of the features of MDD, the extent to which they reproduce the molecular pathology of the human syndrome remains unknown and the functional consequences of these changes on the neuronal networks controlling stress responses are poorly understood. During this presentation, we will first address the extent by which transcriptional signatures associated with MDD compares in men and women. We will then transition to the capacity of different mouse models of chronic stress to recapitulate some of the transcriptional alterations associated with the expression of MDD in both sexes. Finally, we will briefly elaborate on the functional consequences of these changes at the neuronal level and conclude with an integrative perspective on the contribution of sex-specific transcriptional profiles on the expression of stress responses and MDD in men and women.

SeminarNeuroscienceRecording

Targeting the synapse in Alzheimer’s Disease

Johanna Jackson
UK Dementia Research Institute at Imperial College London
Dec 14, 2020

Alzheimer’s Disease is characterised by the accumulation of misfolded proteins, namely amyloid and tau, however it is synapse loss which leads to the cognitive impairments associated with the disease. Many studies have focussed on single time points to determine the effects of pathology on synapses however this does not inform on the plasticity of the synapses, that is how they behave in vivo as the pathology progresses. Here we used in vivo two-photon microscopy to assess the temporal dynamics of axonal boutons and dendritic spines in mouse models of tauopathy[1] (rTg4510) and amyloidopathy[2] (J20). This revealed that pre- and post-synaptic components are differentially affected in both AD models in response to pathology. In the Tg4510 model, differences in the stability and turnover of axonal boutons and dendritic spines immediately prior to neurite degeneration was revealed. Moreover, the dystrophic neurites could be partially rescued by transgene suppression. Understanding the imbalance in the response of pre- and post-synaptic components is crucial for drug discovery studies targeting the synapse in Alzheimer’s Disease. To investigate how sub-types of synapses are affected in human tissue, the Multi-‘omics Atlas Project, a UKDRI initiative to comprehensively map the pathology in human AD, will determine the synaptome changes using imaging and synaptic proteomics in human post mortem AD tissue. The use of multiple brain regions and multiple stages of disease will enable a pseudotemporal profile of pathology and the associated synapse alterations to be determined. These data will be compared to data from preclinical models to determine the functional implications of the human findings, to better inform preclinical drug discovery studies and to develop a therapeutic strategy to target synapses in Alzheimer’s Disease[3].

SeminarNeuroscienceRecording

Unravelling brain connectopathy in autism with cross-species fMRI

Alessandro Gozzi
Istituto Italiano di Tecnologia (Rovereto, Italy)
Nov 18, 2020
SeminarNeuroscience

The role of protein translation pathways in regulating excitation/inhibition balance in epilepsy

Carlo Sala
CNR (Milan, Italy)
Nov 4, 2020
SeminarNeuroscience

Cellular/circuit dysfunction in a model of Dravet syndrome - a severe childhood epilepsy

Ethan M. Goldberg, MD, PhD
The Children's Hospital of Philadelphia
Mar 17, 2020

Dravet syndrome is a severe childhood epilepsy due to heterozygous loss-of-function mutation of the gene SCN1A, which encodes the type 1 neuronal voltage gated sodium (Na+) channel alpha-subunit Nav1.1. Prior studies in mouse models of Dravet syndrome (Scn1a+/- mice) at early developmental time points indicate that, in cerebral cortex, Nav1.1 is predominantly expressed in GABAergic interneurons (INs) and, in particular, in parvalbumin-positive fast-spiking basket cells (PV-INs). This has led to a model of Dravet syndrome pathogenesis whereby Nav1.1 mutation leads to preferential IN dysfunction, decreased synaptic inhibition, hyperexcitability, and epilepsy. We found that, at later developmental time points, the intrinsic excitability of PV-INs has essentially normalized, via compensatory reorganization of axonal Na+ channels. Instead, we found persistent and seemingly paradoxical dysfunction of putative disinhibitory INs expressing vasoactive intestinal peptide (VIP-INs). In vivo two-photon calcium imaging in neocortex during temperature-induced seizures in Scn1a+/- mice showed that mean activity of both putative principal cells and PV-INs was higher in Scn1a+/- relative to wild-type controls during quiet wakefulness at baseline and at elevated core body temperature. However, wild-type PV-INs showed a progressive synchronization in response to temperature elevation that was absent in PV-INs from Scn1a+/- mice immediately prior to seizure onset. We suggest that impaired PV-IN synchronization, perhaps via persistent axonal dysfunction, may contribute to the transition to the ictal state during temperature induced seizures in Dravet syndrome.

mouse models coverage

45 items

Seminar45
Domain spotlight

Explore how mouse models research is advancing inside Neuro.

Visit domain