← Back

Movement Disorders

Topic spotlight
TopicNeuro

movement disorders

Discover seminars, jobs, and research tagged with movement disorders across Neuro.
27 curated items27 Seminars
Updated almost 2 years ago
27 items · movement disorders

Latest

27 results
SeminarNeuroscienceRecording

Novel approaches to non-invasive neuromodulation for neuropsychiatric disorders; Effects of deep brain stimulation on brain function in obsessive-compulsive disorder

Damiaan Denys, MD, PhD & Andrada Neacsiu, PhD
Amsterdam UMC, Netherlands / Duke University School of Medicine, Durham, USA
Feb 29, 2024

On Thursday, February 29th, we will host Damiaan Denys and Andrada Neacsiu. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Closed-loop deep brain stimulation as a neuroprosthetic of dopaminergic circuits – Current evidence and future opportunities; Spatial filtering to enhance signal processing in invasive neurophysiology

Wolf-Julian Neumann, MD & Prof. Victoria Peterson, PhD
Charité – Universitätsmedizin Berlin, Germany / IMAL-UNL-CONICET, Sata Fe, Argentinia
Feb 15, 2024

On Thursday February 15th, we will host Victoria Peterson and Julian Neumann. Victoria will tell us about “Spatial filtering to enhance signal processing in invasive neurophysiology”. Besides his scientific presentation on “Closed-loop deep brain stimulation as a neuroprosthetic of dopaminergic circuits – Current evidence and future opportunities”, Julian will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. Note: The talks will exceptionally be held at 10 ET / 4PM CET. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

From primate anatomy to human neuroimaging: insights into the circuits underlying psychiatric disease and neuromodulation; Large-scale imaging of neural circuits: towards a microscopic human connectome

Suzanne Haber, PhD & Prof. Anastasia Yendiki, PhD
University of Rochester, USA / Harvard Medical School, USA
Oct 26, 2023

On Thursday, October 26th, we will host Anastasia Yendiki and Suzanne Haber. Anastasia Yendiki, PhD, is an Associate Professor in Radiology at the Harvard Medical School and an Associate Investigator at the Massachusetts General Hospital and Athinoula A. Martinos Center. Suzanne Haber, PhD, is a Professor at the University of Rochester and runs a lab at McLean hospital at Harvard Medical School in Boston. She has received numerous awards for her work on neuroanatomy. Beside her scientific presentation, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease

Doris Wang, MD, PhD & Stephanie Cernera, PhD
University of California, San Francisco, USA
Aug 31, 2023

On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Immunosuppression for Parkinson's disease - a new therapeutic strategy?

Caroline Williams-Gray
Department of Clinical Neurosciences, University of Cambridge
May 30, 2023

Caroline Williams-Gray is a Principal Research Associate in the Department of Clinical Neurosciences, University of Cambridge, and an honorary consultant neurologist specializing in Parkinson’s disease and movement disorders. She leads a translational research group investigating the clinical and biological heterogeneity of PD, with the ultimate goal of developing more targeted therapies for different Parkinson’s subtypes. Her recent work has focused on the theory that the immune system plays a significant role in mediating the heterogeneity of PD and its progression. Her lab is investigating this using blood and CSF -based immune markers, PET neuroimaging and neuropathology in stratified PD cohorts; and she is leading the first randomized controlled trial repurposing a peripheral immunosuppressive drug (azathioprine) to slow the progression of PD.

SeminarNeuroscienceRecording

Auditory input to the basal ganglia; Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control

R. Mark Richardson, MD, PhD & Darcy Diesburg, PhD
Harvard Medical School, Boston, USA / Brown University, Providence, USA
May 25, 2023

On Thursday, May 25th we will host Darcy Diesburg and Mark Richardson. Darcy Diesburg, PhD, is a post-doctoral research fellow at Brown University. She will tell us about “Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control”. Mark Richardson, MD, PhD, is the Director of Functional Neurosurgery at the Massachusetts General Hospital, Charles Pappas Associate Professor of Neurosciences at Harvard Medical School and Visiting Associate Professor of Brain and Cognitive Sciences at MIT. Beside his scientific presentation on “Auditory input to the basal ganglia”, he will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

My evolution in invasive human neurophysiology: From basal ganglia single units to chronic electrocorticography; Therapies orchestrated by patients' own rhythms

Philip A. Starr, MD, PhD & Prof. Hayriye Cagnan, PhD
University of California, San Francisco, USA / University of Oxford, UK
Apr 27, 2023

On Thursday, April 27th, we will host Hayriye Cagnan and Philip A. Starr. Hayriye Cagnan, PhD, is an associate professor at the MRC Brain Network Dynamics Unit and University of Oxford. She will tell us about “Therapies orchestrated by patients’ own rhythms”. Philip A. Starr, MD, PhD, is a neurosurgeon and professor of Neurological Surgery at the University of California San Francisco. Besides his scientific presentation on “My evolution in invasive human neurophysiology: from basal ganglia single units to chronic electrocorticography”, he will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Causal Symptom Network Mapping Based on Lesions and Brain Stimulation; Converging Evidence about a Depression Circuit Using Causal Sources of Information

Michael D. Fox, MD, PhD & Prof. Shan Siddiqi, MD
Harvard Medical School & Brigham and Women's Hospital Boston
Mar 30, 2023

It’s our pleasure to announce that we will host Shan Siddiqi and Michael D. Fox on Thursday, March 30th at noon ET / 6PM CET. Shan Siddiqi, MD, is an Assistant Professor of Psychiatry at Harvard Medical School and the director of Psychiatric Neuromodulation Research at the Brigham and Women’s Hospital. Michael D. Fox, MD, PhD, is an Associate Professor of Neurology at Harvard Medical School and the founding director of the Center for Brain Circuit Therapeutics at the Brigham and Women’s Hospital. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Beta oscillations in the basal ganglia: Past, Present and Future; Oscillatory signatures of motor symptoms across movement disorders

Hagai Bergman, MD, PhD & Roxanne Lofredi, MD
Hebrew University of Jerusalem, Israel / Charité – Universitätsmedizin Berlin, Germany
Jan 25, 2023

On Wednesday, January 25th, at noon ET / 6PM CET, we will host Roxanne Lofredi and Hagai Bergman. Roxanne Lofredi, MD, is a research fellow in the Movement Disorders and Neuromodulation Unit at Charité Universitätsmedizin Berlin. Hagai Bergman, MD, PhD, is a Professor of Physiology in the Edmond and Lily Safra Center for Brain Research and Faculty of Medicine at the Hebrew University of Jerusalem, and is Simone and Bernard Guttman Chair in Brain Research. Beside his scientific presentation on “Beta oscillations in the basal ganglia: Past, Present and Future”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Bridging the gap from research to clinical decision making in epilepsy neuromodulation; How to become an integral part of the functional neurosurgery team as a radiologist

Erik H. Middlebrooks, MD & Alexandre Boutet, MD, PhD
Mayo Clinic, Jacksonville, USA / University of Toronto, Canada
Nov 30, 2022

On Wednesday, November 30th, at noon ET / 6PM CET, we will host Alexandre Boutet and Erik H. Middlebrooks. Alexandre Boutet, MD, PhD, is a neuroradiology fellow at the University of Toronto, and will tell us about “How to become an integral part of the functional neurosurgery team as a radiologist”. Erik H. Middlebrooks, MD, is a Professor and Consultant of Neuroradiology and Neurosurgery and the Neuroradiology Program Director at Mayo Clinic. Beside his scientific presentation about “Bridging the Gap from Research to Clinical Decision Making in Epilepsy Neuromodulation”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscience

Neurosurgery for Mental Disorders: Challenging Mindsets; Combining Neuroimaging and Neurophysiology in Parkinson’s Disease

Ludvic Zrinzo, MD, PhD & Kara A. Johnson, PhD
National Hospital for Neurology and Neurosurgery / University of Florida
Oct 26, 2022

On Wednesday, October 26th, at noon ET / 6PM CET, we will host Kara Johnson, PhD, and Ludvic Zrinzo, MD PhD, for the inaugural session of our newly conceived talk series format entitled "Stimulating Brains". Kara A. Johnson, a postdoctoral fellow in Dr. Coralie de Hemptinne’s lab at the University of Florida, will present her work on “Combining imaging and neurophysiology in Parkinson’s disease”. Ludvic Zrinzo, Professor of functional neurosurgery and head of the University College London functional neurosurgery unit, will give us a glimpse at the “Person behind the science”, and give a talk on “Neurosurgery for mental disorders: challenging mindsets”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Dynamic dopaminergic signaling probabilistically controls the timing of self-timed movements

Allison Hamilos
Assad Lab, Harvard University
Feb 23, 2022

Human movement disorders and pharmacological studies have long suggested molecular dopamine modulates the pace of the internal clock. But how does the endogenous dopaminergic system influence the timing of our movements? We examined the relationship between dopaminergic signaling and the timing of reward-related, self-timed movements in mice. Animals were trained to initiate licking after a self-timed interval following a start cue; reward was delivered if the animal’s first lick fell within a rewarded window (3.3-7 s). The first-lick timing distributions exhibited the scalar property, and we leveraged the considerable variability in these distributions to determine how the activity of the dopaminergic system related to the animals’ timing. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time, even on single trials. Steeply rising signals preceded early initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movement. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of the timing distribution, whereas inhibition caused late-shifting, as if dopaminergic manipulation modulated the moment-to-moment probability of unleashing the planned movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation. We conclude that ramping dopaminergic signals, potentially encoding dynamic reward expectation, probabilistically modulate the moment-by-moment decision of when to move. (Based on work from Hamilos et al., eLife, 2021).

SeminarNeuroscience

Adaptive Deep Brain Stimulation: Investigational System Development at the Edge of Clinical Brain Computer Interfacing

Jeffrey Herron
University of Washington
Dec 16, 2021

Over the last few decades, the use of deep brain stimulation (DBS) to improve the treatment of those with neurological movement disorders represents a critical success story in the development of invasive neurotechnology and the promise of brain-computer interfaces (BCI) to improve the lives of those suffering from incurable neurological disorders. In the last decade, investigational devices capable of recording and streaming neural activity from chronically implanted therapeutic electrodes has supercharged research into clinical applications of BCI, enabling in-human studies investigating the use of adaptive stimulation algorithms to further enhance therapeutic outcomes and improve future device performance. In this talk, Dr. Herron will review ongoing clinical research efforts in the field of adaptive DBS systems and algorithms. This will include an overview of DBS in current clinical practice, the development of bidirectional clinical-use research platforms, ongoing algorithm evaluation efforts, a discussion of current adoption barriers to be addressed in future work.

SeminarNeuroscienceRecording

Pure autonomic failure: really that pure?

Alessandra Fanciulli
Innsbruck Medical University, Austria
Nov 18, 2021
SeminarNeuroscienceRecording

Approach to the patient with non-HD chorea

Ruth Walker
Mount Sinai School of Medicine, NY, USA
Apr 20, 2021
SeminarNeuroscienceRecording

MR Biomarkers in Spinocerebellar Ataxias

Gülin Öz
University of Minnesota, Minneapolis, USA
Apr 13, 2021
SeminarNeuroscience

Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy

Federico Zara & Ganna Balagura
Institute G. Gaslini, University of Genoa
Mar 17, 2021

Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.

SeminarNeuroscienceRecording

Myoclonus dystonia

Belén Pérez Dueñas
Vall d'Hebron University Hospital, Barcelona, Spain
Mar 9, 2021
SeminarNeuroscienceRecording

Improving care for rare disease patients in Europe - Rare Disease Day 2021

Holm Graessner Donna Walsh Sophie Bernichtein Tobias Mentzel Maria Judit Molnar
ERN-RND EFNA BRAIN-TEAM ELA Germany Semmelweis University
Feb 23, 2021
SeminarNeuroscienceRecording

Rare Disease Natural History Studies: Experience from the GNAO1 Natural History study in a pre and postpandemic world

Amy R. Viehoever
Washington University, Saint Louis, USA
Feb 9, 2021
SeminarNeuroscienceRecording

Genetic dystonia and treatment

Sylvia Boesch
Medical University of Innsbruck, Austria
Feb 2, 2021
SeminarNeuroscienceRecording

Progressive Supranuclear Palsy – Update on Diagnostics, Biomarkers and Therapies

Günter Höglinger
Medical University Hannover, Germany
Jan 26, 2021
SeminarNeuroscienceRecording

Functional movement disorders: a diagnostic guide

Christos Ganos
Charité, University Medicine, Berlin, Germany
Dec 1, 2020
SeminarNeuroscienceRecording

Hereditary Spastic Paraplegia (HSP): clinical disease course

Rebecca Schüle
University of Tübingen, Germany
Oct 1, 2020

movement disorders coverage

27 items

Seminar27
Domain spotlight

Explore how movement disorders research is advancing inside Neuro.

Visit domain