neural decoder
Latest
Optimising spiking interneuron circuits for compartment-specific feedback
Cortical circuits process information by rich recurrent interactions between excitatory neurons and inhibitory interneurons. One of the prime functions of interneurons is to stabilize the circuit by feedback inhibition, but the level of specificity on which inhibitory feedback operates is not fully resolved. We hypothesized that inhibitory circuits could enable separate feedback control loops for different synaptic input streams, by means of specific feedback inhibition to different neuronal compartments. To investigate this hypothesis, we adopted an optimization approach. Leveraging recent advances in training spiking network models, we optimized the connectivity and short-term plasticity of interneuron circuits for compartment-specific feedback inhibition onto pyramidal neurons. Over the course of the optimization, the interneurons diversified into two classes that resembled parvalbumin (PV) and somatostatin (SST) expressing interneurons. The resulting circuit can be understood as a neural decoder that inverts the nonlinear biophysical computations performed within the pyramidal cells. Our model provides a proof of concept for studying structure-function relations in cortical circuits by a combination of gradient-based optimization and biologically plausible phenomenological models
The geometry of abstraction in hippocampus and pre-frontal cortex
The curse of dimensionality plagues models of reinforcement learning and decision-making. The process of abstraction solves this by constructing abstract variables describing features shared by different specific instances, reducing dimensionality and enabling generalization in novel situations. Here we characterized neural representations in monkeys performing a task where a hidden variable described the temporal statistics of stimulus-response-outcome mappings. Abstraction was defined operationally using the generalization performance of neural decoders across task conditions not used for training. This type of generalization requires a particular geometric format of neural representations. Neural ensembles in dorsolateral pre-frontal cortex, anterior cingulate cortex and hippocampus, and in simulated neural networks, simultaneously represented multiple hidden and explicit variables in a format reflecting abstraction. Task events engaging cognitive operations modulated this format. These findings elucidate how the brain and artificial systems represent abstract variables, variables critical for generalization that in turn confers cognitive flexibility.
The geometry of abstraction in artificial and biological neural networks
The curse of dimensionality plagues models of reinforcement learning and decision-making. The process of abstraction solves this by constructing abstract variables describing features shared by different specific instances, reducing dimensionality and enabling generalization in novel situations. We characterized neural representations in monkeys performing a task where a hidden variable described the temporal statistics of stimulus-response-outcome mappings. Abstraction was defined operationally using the generalization performance of neural decoders across task conditions not used for training. This type of generalization requires a particular geometric format of neural representations. Neural ensembles in dorsolateral pre-frontal cortex, anterior cingulate cortex and hippocampus, and in simulated neural networks, simultaneously represented multiple hidden and explicit variables in a format reflecting abstraction. Task events engaging cognitive operations modulated this format. These findings elucidate how the brain and artificial systems represent abstract variables, variables critical for generalization that in turn confers cognitive flexibility.
neural decoder coverage
3 items