TopicNeuro

neural population code

3 ePosters2 Seminars

Latest

SeminarNeuroscienceRecording

Efficient Random Codes in a Shallow Neural Network

Rava Azeredo da Silveira
French National Centre for Scientific Research (CNRS), Paris
Jun 15, 2022

Efficient coding has served as a guiding principle in understanding the neural code. To date, however, it has been explored mainly in the context of peripheral sensory cells with simple tuning curves. By contrast, ‘deeper’ neurons such as grid cells come with more complex tuning properties which imply a different, yet highly efficient, strategy for representing information. I will show that a highly efficient code is not specific to a population of neurons with finely tuned response properties: it emerges robustly in a shallow network with random synapses. Here, the geometry of population responses implies that optimality obtains from a tradeoff between two qualitatively different types of error: ‘local’ errors (common to classical neural population codes) and ‘global’ (or ‘catastrophic’) errors. This tradeoff leads to efficient compression of information from a high-dimensional representation to a low-dimensional one. After describing the theoretical framework, I will use it to re-interpret recordings of motor cortex in behaving monkey. Our framework addresses the encoding of (sensory) information; if time allows, I will comment on ongoing work that focuses on decoding from the perspective of efficient coding.

SeminarNeuroscience

Dissecting the neural processes supporting perceptual learning

Wu Li
Beijing Normal University, Beijing, China
Mar 28, 2022

The brain and its inherent functions can be modified by various forms of learning. Learning-induced changes are seen even in basic perceptual functions. In particular, repeated training in a perceptual task can lead to a significant improvement in the trained task—a phenomenon known as perceptual learning. There has been a long-standing debate about the mechanisms of perceptual learning. In this talk, I will present results from our series of electrophysiological studies. These studies have consistently shown that perceptual learning is mediated by concerted changes in both perceptual and cognitive processes, resulting in improved sensory representation, enhanced top-down influences, and refined readout process.

ePosterNeuroscience

Mechanistic modeling of Drosophila neural population codes in natural social communication

Rich Pang,Christa Baker,Diego Pacheco,Jonathan Pillow,Mala Murthy

COSYNE 2022

ePosterNeuroscience

Mechanistic modeling of Drosophila neural population codes in natural social communication

Rich Pang,Christa Baker,Diego Pacheco,Jonathan Pillow,Mala Murthy

COSYNE 2022

ePosterNeuroscience

Homeostatic synaptic scaling optimizes learning in network models of neural population codes

Jonathan Mayzel & Elad Schneidman

COSYNE 2023

neural population code coverage

5 items

ePoster3
Seminar2
Domain spotlight

Explore how neural population code research is advancing inside Neuro.

Visit domain