TopicNeuroscience
Content Overview
7Total items
4Seminars
3ePosters

Latest

SeminarNeuroscience

Dimensionality reduction beyond neural subspaces

Alex Cayco Gajic
École Normale Supérieure
Jan 29, 2025

Over the past decade, neural representations have been studied from the lens of low-dimensional subspaces defined by the co-activation of neurons. However, this view has overlooked other forms of covarying structure in neural activity, including i) condition-specific high-dimensional neural sequences, and ii) representations that change over time due to learning or drift. In this talk, I will present a new framework that extends the classic view towards additional types of covariability that are not constrained to a fixed, low-dimensional subspace. In addition, I will present sliceTCA, a new tensor decomposition that captures and demixes these different types of covariability to reveal task-relevant structure in neural activity. Finally, I will close with some thoughts regarding the circuit mechanisms that could generate mixed covariability. Together this work points to a need to consider new possibilities for how neural populations encode sensory, cognitive, and behavioral variables beyond neural subspaces.

SeminarNeuroscience

Unifying the mechanisms of hippocampal episodic memory and prefrontal working memory

James Whittington
Stanford University / University of Oxford
Feb 14, 2024

Remembering events in the past is crucial to intelligent behaviour. Flexible memory retrieval, beyond simple recall, requires a model of how events relate to one another. Two key brain systems are implicated in this process: the hippocampal episodic memory (EM) system and the prefrontal working memory (WM) system. While an understanding of the hippocampal system, from computation to algorithm and representation, is emerging, less is understood about how the prefrontal WM system can give rise to flexible computations beyond simple memory retrieval, and even less is understood about how the two systems relate to each other. Here we develop a mathematical theory relating the algorithms and representations of EM and WM by showing a duality between storing memories in synapses versus neural activity. In doing so, we develop a formal theory of the algorithm and representation of prefrontal WM as structured, and controllable, neural subspaces (termed activity slots). By building models using this formalism, we elucidate the differences, similarities, and trade-offs between the hippocampal and prefrontal algorithms. Lastly, we show that several prefrontal representations in tasks ranging from list learning to cue dependent recall are unified as controllable activity slots. Our results unify frontal and temporal representations of memory, and offer a new basis for understanding the prefrontal representation of WM

SeminarNeuroscience

Invariant neural subspaces maintained by feedback modulation

Laura Naumann
Bernstein Center for Computational Neuroscience, Berlin
Jul 14, 2022

This session is a double feature of the Cologne Theoretical Neuroscience Forum and the Institute of Neuroscience and Medicine (INM-6) Computational and Systems Neuroscience of the Jülich Research Center.

SeminarNeuroscienceRecording

Invariant neural subspaces maintained by feedback modulation

Henning Sprekeler
TU Berlin
Feb 19, 2022

Sensory systems reliably process incoming stimuli in spite of changes in context. Most recent models accredit this context invariance to an extraction of increasingly complex sensory features in hierarchical feedforward networks. Here, we study how context-invariant representations can be established by feedback rather than feedforward processing. We show that feedforward neural networks modulated by feedback can dynamically generate invariant sensory representations. The required feedback can be implemented as a slow and spatially diffuse gain modulation. The invariance is not present on the level of individual neurons, but emerges only on the population level. Mechanistically, the feedback modulation dynamically reorients the manifold of neural activity and thereby maintains an invariant neural subspace in spite of contextual variations. Our results highlight the importance of population-level analyses for understanding the role of feedback in flexible sensory processing.

ePosterNeuroscience

Invariant neural subspaces maintained by feedback modulation

Laura Bella Naumann,Joram Keijser,Henning Sprekeler

COSYNE 2022

ePosterNeuroscience

Invariant neural subspaces maintained by feedback modulation

Laura Bella Naumann,Joram Keijser,Henning Sprekeler

COSYNE 2022

ePosterNeuroscience

Dimensionality reduction beyond neural subspaces

N. Alex Cayco-Gajic

Bernstein Conference 2024

neural subspaces coverage

7 items

Seminar4
ePoster3

Share your knowledge

Know something about neural subspaces? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how neural subspaces research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.