neurocomputation
Latest
A predictive-processing account of psychosis
There has been increasing interest in the neurocomputational mechanisms underlying psychotic disorders in recent years. One promising approach is based on the theoretical framework of predictive processing, which proposes that inferences regarding the state of the world are made by combining prior beliefs with sensory signals. Delusions and hallucinations are the core symptoms of psychosis and often co-occur. Yet, different predictive-processing alterations have been proposed for these two symptom dimensions, according to which the relative weighting of prior beliefs in perceptual inference is decreased or increased, respectively. I will present recent behavioural, neuroimaging, and computational work that investigated perceptual decision-making under uncertainty and ambiguity to elucidate the changes in predictive processing that may give rise to psychotic experiences. Based on the empirical findings presented, I will provide a more nuanced predictive-processing account that suggests a common mechanism for delusions and hallucinations at low levels of the predictive-processing hierarchy, but still has the potential to reconcile apparently contradictory findings in the literature. This account may help to understand the heterogeneity of psychotic phenomenology and explain changes in symptomatology over time.
NMC4 Short Talk: Neurocomputational mechanisms of causal inference during multisensory processing in the macaque brain
Natural perception relies inherently on inferring causal structure in the environment. However, the neural mechanisms and functional circuits that are essential for representing and updating the hidden causal structure during multisensory processing are unknown. To address this, monkeys were trained to infer the probability of a potential common source from visual and proprioceptive signals on the basis of their spatial disparity in a virtual reality system. The proprioceptive drift reported by monkeys demonstrated that they combined historical information and current multisensory signals to estimate the hidden common source and subsequently updated both the causal structure and sensory representation. Single-unit recordings in premotor and parietal cortices revealed that neural activity in premotor cortex represents the core computation of causal inference, characterizing the estimation and update of the likelihood of integrating multiple sensory inputs at a trial-by-trial level. In response to signals from premotor cortex, neural activity in parietal cortex also represents the causal structure and further dynamically updates the sensory representation to maintain consistency with the causal inference structure. Thus, our results indicate how premotor cortex integrates historical information and sensory inputs to infer hidden variables and selectively updates sensory representations in parietal cortex to support behavior. This dynamic loop of frontal-parietal interactions in the causal inference framework may provide the neural mechanism to answer long-standing questions regarding how neural circuits represent hidden structures for body-awareness and agency.
The Social Brain: From Models to Mental Health
Given the complex and dynamic nature of our social relationships, the human brain needs to quickly learn and adapt to new social situations. The breakdown of any of these computations could lead to social deficits, as observed in many psychiatric disorders. In this talk, I will present our recent neurocomputational and intracranial work that attempts to model both 1) how humans dynamically adapt beliefs about other people and 2) how individuals can exert influence over social others through model-based forward thinking. Lastly, I will present our findings of how impaired social computations might manifest in different disorders such as addiction, delusion, and autism. Taken together, these findings reveal the dynamic and proactive nature of human interactions as well as the clinical significance of these high-order social processes.
Behavioral and neurobiological mechanisms of social cooperation
Human society operates on large-scale cooperation and shared norms of fairness. However, individual differences in cooperation and incentives to free-riding on others’ cooperation make large-scale cooperation fragile and can lead to reduced social-welfare. Deciphering the neural codes representing potential rewards/costs for self and others is crucial for understanding social decision-making and cooperation. I will first talk about how we integrate computational modeling with functional magnetic resonance imaging to investigate the neural representation of social value and the modulation by oxytocin, a nine-amino acid neuropeptide, in participants evaluating monetary allocations to self and other (self-other allocations). Then I will introduce our recent studies examining the neurobiological mechanisms underlying intergroup decision-making using hyper-scanning, and share with you how we alter intergroup decisions using psychological manipulations and pharmacological challenge. Finally, I will share with you our on-going project that reveals how individual cooperation spreads through human social networks. Our results help to better understand the neurocomputational mechanism underlying interpersonal and intergroup decision-making.
Neurocomputational mechanisms underlying developmental psychiatric disorders
How do parts influence the whole? How do parts influence the whole? Neural computation, from single neuron to behaviour
With the Donders Inclusion Seminars, we celebrate diversity. Please join us on March 17th, 2021 at 15.00 (CET) as we next welcome Dr. Fleur Zeldenrust of the Donders Institute.
The When, Where and What of visual memory formation
The eyes send a continuous stream of about two million nerve fibers to the brain, but only a fraction of this information is stored as visual memories. This talk will detail three neurocomputational models that attempt an understanding how the visual system makes on-the-fly decisions about how to encode that information. First, the STST family of models (Bowman & Wyble 2007; Wyble, Potter, Bowman & Nieuwenstein 2011) proposes mechanisms for temporal segmentation of continuous input. The conclusion of this work is that the visual system has mechanisms for rapidly creating brief episodes of attention that highlight important moments in time, and also separates each episode from temporally adjacent neighbors to benefit learning. Next, the RAGNAROC model (Wyble et al. 2019) describes a decision process for determining the spatial focus (or foci) of attention in a spatiotopic field and the neural mechanisms that provide enhancement of targets and suppression of highly distracting information. This work highlights the importance of integrating behavioral and electrophysiological data to provide empirical constraints on a neurally plausible model of spatial attention. The model also highlights how a neural circuit can make decisions in a continuous space, rather than among discrete alternatives. Finally, the binding pool (Swan & Wyble 2014; Hedayati, O’Donnell, Wyble in Prep) provides a mechanism for selectively encoding specific attributes (i.e. color, shape, category) of a visual object to be stored in a consolidated memory representation. The binding pool is akin to a holographic memory system that layers representations of select latent representations corresponding to different attributes of a given object. Moreover, it can bind features into distinct objects by linking them to token placeholders. Future work looks toward combining these models into a coherent framework for understanding the full measure of on-the-fly attentional mechanisms and how they improve learning.
A neurocomputational dissociation of how intrinsic and extrinsic motivation improve memorization performance
FENS Forum 2024
A neurocomputational approach for effort-based decision-making: Comparing self and environmental motivation
FENS Forum 2024
Neurocomputational investigation of human schema-based learning, decision making and their modulators in ecological settings
FENS Forum 2024
Neurocomputational underpinnings of predictive perception
Neuromatch 5
neurocomputation coverage
11 items