TopicNeuroscience
Content Overview
90Total items
50Seminars
40ePosters

Latest

SeminarNeuroscience

Biomolecular condensates as drivers of neuroinflammation

Steven Boeynaems
Department of Molecular and Human Genetics, Baylor College of Medicine Duncan Neurological Research Institute, Texas Children's Hospital, USA
Nov 4, 2025
SeminarNeuroscience

Expanding mechanisms and therapeutic targets for neurodegenerative disease

Aaron D. Gitler
Department of Genetics, Stanford University
Jun 5, 2025

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. By re-analyzing RNA-sequencing datasets from human FTD/ALS brains, we discovered dozens of novel cryptic splicing events in important neuronal genes. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown. We discovered that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harboring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function. Recent analyses have revealed even further changes in TDP-43 target genes, including widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.

SeminarNeuroscience

Pharmacological exploitation of neurotrophins and their receptors to develop novel therapeutic approaches against neurodegenerative diseases and brain trauma

Ioannis Charalampopoulos
Professor of Pharmacology, Medical School, University of Crete & Affiliated Researcher, Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH)
Mar 7, 2025

Neurotrophins (NGF, BDNF, NT-3) are endogenous growth factors that exert neuroprotective effects by preventing neuronal death and promoting neurogenesis. They act by binding to their respective high-affinity, pro-survival receptors TrkA, TrkB or TrkC, as well as to p75NTR death receptor. While these molecules have been shown to significantly slow or prevent neurodegeneration, their reduced bioavailability and inability to penetrate the blood-brain-barrier limit their use as potential therapeutics. To bypass these limitations, our research team has developed and patented small-sized, lipophilic compounds which selectively resemble neurotrophins’ effects, presenting preferable pharmacological properties and promoting neuroprotection and repair against neurodegeneration. In addition, the combination of these molecules with 3D cultured human neuronal cells, and their targeted delivery in the brain ventricles through soft robotic systems, could offer novel therapeutic approaches against neurodegenerative diseases and brain trauma.

SeminarNeuroscience

LRRK2 – a master regulator of neurodegeneration: acting on multiple systems including neuroinflammatory signaling, vesicular trafficking, and cell death pathways

Hardy Rideout
Biomedical Research Foundation, Academy of Athens
Feb 21, 2025
SeminarNeuroscience

The synaptic functions of Alpha Synuclein and Lrrk2

Subhojit Roy, MD, PhD
University of Wisconsin-Madison
Feb 18, 2025

Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, followed by functional assays, will be presented.

SeminarNeuroscience

The many roles of microglia in the pathogenesis of neurodegeneration

Rosa Chiara Paolicelli
University of Lasuanne, Switzerland
Jan 19, 2024
SeminarNeuroscience

‘Going South!’ Comparative mitochondrial biology in ageing and neurodegeneration

Lisa Chakrabarti
University of Nottingham, UK
Dec 14, 2023
SeminarNeuroscience

Effects of Presenilin1 FAD mutants on brain angiogenic functions and neuroprotection in Alzheimer’s Disease

Georgakopoulos Tassos
Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, USA
Nov 15, 2023
SeminarNeuroscience

Glial and Neuronal Biology of the Aging Brain Symposium, Alana Down Syndrome Center and Aging Brain Initiative at Picower, MIT

Adam M. Brickman (Columbia University), Myriam Heiman (Picower Institute, MIT), Michael Heneka (Luxembourg Centre for Systems Biomedicine), Shane Liddelow (NYU), Nancy Yuk-Yu Ip (The Hong Kong University of Science and Technology)
Oct 6, 2022

The Aging Brain Initiative (ABI) is an interdisciplinary effort by MIT focusing on understanding neurodegeneration and discovery efforts to find hallmarks of aging, both in health and disease." "The Alana Down Syndrome Center (ADSC) aims to deepen knowledge about Down syndrome and to improve health, autonomy and inclusion of people with this genetic condition." "The ABI and the ADSC have joined forces for this year's symposium to highlight how aging-related changes to the brain overlap with neurological aspects of Down syndrome. Our hope is to encourage greater collaboration between the brain aging and Down syndrome research communities.

SeminarNeuroscience

Glial and Neuronal Biology of the Aging Brain Symposium, Alana Down Syndrome Center and Aging Brain Initiative at Picower, MIT

Gilbert Di Paolo (Denali Therapeutics), Li Gan (Weill Cornell Medical College), Elizabeth Head (University of California, Irvine), Beth Stevens (Boston Children's Hospital), Tracy Young-Pearse (Brigham and Women's Hospital)
Oct 5, 2022

The Aging Brain Initiative (ABI) is an interdisciplinary effort by MIT focusing on understanding neurodegeneration and discovery efforts to find hallmarks of aging, both in health and disease." "The Alana Down Syndrome Center (ADSC) aims to deepen knowledge about Down syndrome and to improve health, autonomy and inclusion of people with this genetic condition." "The ABI and the ADSC have joined forces for this year's symposium to highlight how aging-related changes to the brain overlap with neurological aspects of Down syndrome. Our hope is to encourage greater collaboration between the brain aging and Down syndrome research communities.

SeminarNeuroscience

Systemic regulation and measurement of mammalian aging

Tony Wyss-Coray
Stanford University
May 31, 2022

Brain aging leads to cognitive decline and is the main risk factor for sporadic forms of neurodegenerative diseases including Alzheimer’s disease. While brain cell- and tissue-intrinsic factors are likely key determinants of the aging process recent studies document a remarkable susceptibility of the brain to circulatory factors. Thus, blood borne factors from young mice or humans are sufficient to slow aspects of brain aging and improve cognitive function in old mice and, vice versa, factors from old mice are detrimental for young mice and impair cognition. We found evidence that the cerebrovasculature is an important target of circulatory factors and that brain endothelial cells show prominent age-related transcriptional changes in response to plasma. Furthermore, plasma proteins are taken up broadly into the young brain through receptor mediated transport which declines with aging. At the same time, brain derived proteins are detectable in plasma allowing us to measure physiological changes linked to brain aging in plasma. We are exploring the relevance of these findings for neurodegeneration and potential applications towards therapies.

SeminarNeuroscienceRecording

Apathy and impulsivity in neurological disease – cause, effect and treatment

James Rowe
Department of Clinical Neurosciences, University of Cambridge
May 24, 2022
SeminarNeuroscience

ISYNC: International SynAGE Conference on Healthy Ageing

Prof. Dr. Ulman Lindenberger, Prof. Dr. Carlos Dotti, Prof. Dr. Patrick Verstreken, Prof. Dr. James H. Cole, ...
Mar 29, 2022

The SynAGE committee members are thrilled to host ISYNC, the International SynAGE conference on healthy ageing, on 28-30 March 2022 in Magdeburg, Germany. This conference has been entirely organised from young scientists of the SynAGE research training group RTG 2413 (www.synage.de) and represents a unique occasion for researchers from all over the world to bring together and join great talks and sessions with us and our guests. A constantly updated list of our speakers can be found on the conference webpage: www.isync-md.de. During the conference, attendees will have access to a range of symposia which will deal with Glia, Biomarkers and Immunoresponses during ageing to neurodegeneration brain integrity and cognitive function in health and diseases. Moreover, the conference will offer social events especially for young researchers and the possibility to network together in a beautiful and suggestive location where our conference will take place: the Johanniskirche. The event will be happening in person, but due to the current pandemic situation and restrictions we are planning the conference as a hybrid event with lots of technical support to ensure that every participant can follow the talks and take part in the scientific discussions. The registration to our ISYNC conference is free of charge. However, the number of people attending the conference in person is restricted to 100. Afterwards, registrations will be accepted for joining virtually only. The registration is open until 15.02.2022. Especially for PhD and MD Students: Check our available Travel Grants, Poster Prize and SynAGE Award Dinner: https://www.isync-md.de/index.php/phd-md-specials/ If you need any further information don’t hesitate to contact us via email: contact@synage.de. We are looking forward to meet you in 2022 in Magdeburg to discuss about our research and ideas and bless together science. Your ISYNC organization Committee

SeminarNeuroscience

The Brain Conference (the Guarantors of Brain)

Programme of speakers
The Guarantors of Brain
Feb 25, 2022

Join the Brain Conference on 24-25 February 2022 for the opportunity to hear from neurology’s leading scientists and clinicians. The two-day virtual programme features clinical teaching talks and research presentations from expert speakers including neuroscientist Professor Gina Poe, and the winner of the 2021 Brain Prize, neurologist Professor Peter Goadsby." "Tickets for The Brain Conference 2022 cost just £30, but register with promotional code BRAINCONEM20 for a discounted rate of £25.

SeminarNeuroscience

The Brain Conference (the Guarantors of Brain)

Programme of speakers
The Guarantors of Brain
Feb 24, 2022

Join the Brain Conference on 24-25 February 2022 for the opportunity to hear from neurology’s leading scientists and clinicians. The two-day virtual programme features clinical teaching talks and research presentations from expert speakers including neuroscientist Professor Gina Poe, and the winner of the 2021 Brain Prize, neurologist Professor Peter Goadsby." "Tickets for The Brain Conference 2022 cost just £30, but register with promotional code BRAINCONEM20 for a discounted rate of £25.

SeminarNeuroscience

Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice

Tim Viney
University of Oxford
Feb 11, 2022

The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.

SeminarNeuroscienceRecording

Mechanisms to medicines in neurodegeneration

Giovann Mallucci
Department of Clinical Neurosciences, University of Cambridge
Nov 30, 2021

Dysregulation of protein synthesis both globally and locally in neurons and astrocytes is a key feature of neurodegenerative diseases. Aberrant signalling through the Unfolded Protein Response (UPR) and related Integrated Stress Response (ISR) have become major targets for neuroprotection in these disorders. In addition, other homeostatic mechanisms and stress responses, including the cold shock response, appear to regulate local translation and RNA splicing to control synapse maintenance and regeneration and can also be targeted therapeutically for neuroprotection. We have defined the role of UPR/ISR and the cold-shock response in neurodegenerative disorders and have developed translational strategies targeting them for new treatments for dementia.

SeminarNeuroscience

Dysfunction of neurons and circuits in Alzheimer’s disease

Arthur Konnerth
Technical University of Munich, Winner of the Brain Prize 2015
Nov 4, 2021
SeminarNeuroscience

Evidence for the role of glymphatic dysfunction in the development of Alzheimer’s disease

Jeffrey Iliff
VA Puget Sound Health Care System, University of Washignton, Seattle, WA, USA
Oct 25, 2021

Glymphatic perivascular exchange is supported by the astroglial water channel aquaporin-4 (AQP4), which localizes to perivascular astrocytic endfeet surrounding the cerebral vasculature. In aging mice, impairment of glymphatic function is associated with reduced perivascular AQP4 localization, yet whether these changes contribute to the development of neurodegenerative disease, such as Alzheimer’s disease (AD), remains unknown. Using post mortem human tissue, we evaluated perivascular AQP4 localization in the frontal cortical gray matter, white matter, and hippocampus of cognitively normal subjects and those with AD. Loss of perivascular and increasing cellular localization of AQP4 in the frontal gray matter was specifically associated with AD status, amyloid β (Aβ) and tau pathology, and cognitive decline in the early stages of disease. Using AAV-PHP.B to drive expression on non-perivascular AQP4 in wild type and Tg2576 (APPSwe, mouse model of Aβ deposition) mice, increased cellular AQP4 localization did not slow glymphatic function or change Aβ deposition. Using the Snta1 knockout line (which lacks perivascular AQP4 localization), we observed that loss AQP4 from perivascular endfeet slowed glymphatic function in wild type mice and accelerated Aβ plaque deposition in Tg2576 mice. These findings demonstrate that loss of perivascular AQP4 localization, and not increased cellular AQP4 localization, slows glymphatic function and promotes the development of AD pathology. To evaluate whether naturally occurring variation in the human AQP4 gene, or the alpha syntrophin (SNTA1), dystrobrevin (DTNA) or dystroglycan (DAG1) genes (whose products maintain perivascular AQP4 localization) confer risk for or protection from AD pathology or clinical progression, we evaluated 56 tag single nucleotide polymorphisms (SNPs) across these genes for association with CSF AD biomarkers, MRI measures of cortical and hippocampal atrophy, and longitudinal cognitive decline in the Alzheimer’s Disease Neuroimaging Initiative I (ADNI I) cohort. We identify 25 different significant associations between AQP4, SNTA1, DTNA, and DAG1 tag SNPs and phenotypic measures of AD pathology and progression. These findings provide complimentary human genetic evidence for the contribution of perivascular glymphatic dysfunction to the development of AD in human populations.

SeminarNeuroscience

NAD+ metabolism in axon and neurodegeneration (from a fly’s perspective)

Lukas Neukomm
Department of Fundamental Neurosciences, UNIL, Lausanne, Switzerland
Oct 21, 2021
SeminarNeuroscience

Microbiota in the health of the nervous system and the response to stress

Andrea Calixto
Universidad de Valparaiso, Chile
Sep 27, 2021

Microbes have shaped the evolution of eukaryotes and contribute significantly to the physiology and behavior of animals. Some of these traits are inherited by the progenies. Despite the vast importance of microbe-host communication, we still do not know how bacteria change short term traits or long-term decisions in individuals or communities. In this seminar I will present our work on how commensal and pathogenic bacteria impact specific neuronal phenotypes and decision making. The traits we specifically study are the degeneration and regeneration of neurons and survival behaviors in animals. We use the nematode Caenorhabditis elegans and its dietary bacteria as model organisms. Both nematode and bacteria are genetically tractable, simplifying the detection of specific molecules and their effect on measurable characteristics. To identify these molecules we analyze their genomes, transcriptomes and metabolomes, followed by functional in vivo validation. We found that specific bacterial RNAs and bacterially produced neurotransmitters are key to trigger a survival behavioral and neuronal protection respectively. While RNAs cause responses that lasts for many generations we are still investigating whether bacterial metabolites are capable of inducing long lasting phenotypic changes.

SeminarNeuroscience

Understanding the Mechanisms of Epilepsy in mTORopathies

Angelique Bordey
Neurosurgery, Cellular & Molecular Physiology, Yale School of Medicine
Jul 29, 2021
SeminarNeuroscienceRecording

Human stem cell models of neurodegeneration: complex, relevant and robust

Clare Jones
Talisman Therapeutics
Jul 22, 2021
SeminarNeuroscience

Roles of microglia in the pathogenesis of neurodegeneration

Rosa C. Paolicelli
University of Lausanne
Jun 17, 2021

Microglia are implicated in a variety of functions in the central nervous system, ranging from shaping neural circuits during early brain development, to surveying the brain parenchyma, and providing trophic support to neurons across the entire lifespan. In neurodegeneration, microglia have been considered for long time mere bystanders, accompanying and worsening neuronal damage. However, recent evidence indicates that microglia can causally contribute to neurodegenerative diseases, and that their dysfunction can even be at the origin of the pathology. In fact, the broad range of physiological roles microglia play in the healthy brain suggest that faulty microglia can initiate neurodegeneration through several possible mechanisms. In particular, in this seminar, we will discuss how dysfunctional microglia can affect synaptic function leading to pathological synapse loss, thus putting microglia center stage in the pathogenesis of brain disorders.

SeminarNeuroscience

Parp mutations protect from mitochondrial toxicity in Alzheimer’s disease

Yizhou Yu
University of Cambridge, MRC Toxicology Unit
Jun 9, 2021

Alzheimer’s disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer’s disease associated with the accumulation of a toxic form of amyloid-β (Aβ) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here, we analysed the metabolomic changes in flies over-expressing Aβ and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aβ toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer’s disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer’s disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B, are associated with a decrease in the risk and severity of Alzheimer’s disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes, such as PARPs are potential therapies for Alzheimer’s disease.

SeminarNeuroscienceRecording

Regenerative Neuroimmunology - a stem cell perspective

Stefano Pluchino
Department of Clinical Neurosciences, University of Cambridge
Jun 1, 2021

There are currently no approved therapies to slow down the accumulation of neurological disability that occurs independently of relapses in multiple sclerosis (MS). International agencies are engaging to expedite the development of novel strategies capable of modifying disease progression, abrogating persistent CNS inflammation, and support degenerating axons in people with progressive MS. Understanding why regeneration fails in the progressive MS brain and developing new regenerative approaches is a key priority for the Pluchino Lab. In particular, we aim to elucidate how the immune system, in particular its cells called myeloid cells, affects brain structure and function under normal healthy conditions and in disease. Our objective is to find how myeloid cells communicate with the central nervous system and affect tissue healing and functional recovery by stimulating mechanisms of brain plasticity mechanisms such as the generation of new nerve cells and the reduction of scar formation. Applying combination of state-of-the-art omic technologies, and molecular approaches to study murine and human disease models of inflammation and neurodegeneration, we aim to develop experimental molecular medicines, including those with stem cells and gene therapy vectors, which slow down the accumulation of irreversible disabilities and improve functional recovery after progressive multiple sclerosis, stroke and traumatic injuries. By understanding the mechanisms of intercellular (neuro-immune) signalling, diseases of the brain and spinal cord may be treated more effectively, and significant neuroprotection may be achieved with new tailored molecular therapeutics.

SeminarNeuroscience

Numbing intraneuronal Tau levels to prevent neurodegeneration in tauopathies

Michel Cayouette
Montreal Clinical Research Institute (IRCM)
May 31, 2021

Intraneuronal accumulation of the microtubule associated protein Tau is largely recognized as an important toxic factor linked to neuronal cell death in Alzheimer’s disease and tauopathies. While there has been progress uncovering mechanisms leading to the formation of toxic Tau tangles, less is known about how intraneuronal Tau levels are regulated in health and disease. Here, I will discuss our recent work showing that the intracellular trafficking adaptor protein Numb is critical to control intraneuronal Tau levels. Inactivation of Numb in retinal ganglion cells increases monomeric and oligomeric Tau levels and leads to axonal blebbing in optic nerves, followed by significant neuronal cell loss in old mice. Interestingly, overexpression of the long isoform of Numb (Numb-72) decreases intracellular Tau levels by promoting exocytosis of monomeric Tau. In TauP301S and triple transgenic AD mouse models, expression of Numb-72 in RGCs reduces the number of axonal blebs and prevents neurodegeneration. Finally, inactivation of Numb in TauP301S mice accelerates neurodegeneration in both the retina and spinal cord and leads to precocious paralysis. Taken together, these results uncover Numb as a essential regulator of Tau homeostasis in neurons and as a potential therapeutic agent for AD and tauopathies.

SeminarNeuroscienceRecording

Can we repair the Parkinsonian brain?

Roger Barker
Department of Clinical Neurosciences, University of Cambridge
May 4, 2021
SeminarNeuroscience

Targeting selective autophagy against neurodegenerative diseases

Ana Maria Cuervo
Albert Einstein College of Medicine, New York, USA
Apr 21, 2021

Protein quality control is essential for maintenance of a healthy and functional proteome that can attend the multiplicity of cellular functions. Failure of the systems that contribute to protein homeostasis, the so called proteostasis networks, have been identified in the pathogenesis of multiple neurodegenerative disorders and demonstrated to contribute to disease onset and progression. We are interested in autophagy, one of the components of the proteostasis network, and in the interplay of wo selective types of autophagy, chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI), with neurodegeneration. We have recently found that pathogenic proteins involved in common neurodegenerative conditions such as tauopathies or Parkinson’s disease, can exert a toxic effect in both types of selective types of autophagy compromising their functioning. We have now used mouse models with compromised CMA that support increased propagation of proteins such as tau and alpha-synuclein and an exacerbation of disease phenotype with aging. Conversely, genetic or chemical upregulation of CMA in this context of proteotoxicity slow down disease progression by facilitating effective intracellular removal of pathogenic proteins. Our findings highlight CMA and eMI as potential novel therapeutic targets against neurodegeneration.

SeminarNeuroscience

Using human pluripotent stem cells to model obesity in vitro

Florian Merkle
University of Cambridge
Apr 15, 2021

Obesity and neurodegeneration lead to millions of premature deaths each year and lack broadly effective treatments. Obesity is largely caused by the abnormal function of cell populations in the hypothalamus that regulate appetite. We have developed methods generate human hypothalamic neurons from hPSCs to study how they respond to nutrients and hormones (e.g. leptin) and how disease-associated mutations alter their function. Since human hypothalamic neurons can be produced in large numbers, are functionally responsive, have a human genome that can be readily edited, and are in culture environment that can be readily controlled, there is an unprecedented opportunity to study the genetic and environmental factors underlying obesity. In addition, we are fascinated by the fact that mid-life obesity is a risk factor for dementia later in life, and caloric restriction, exercise, and certain anti-obesity drugs are neuroprotective, suggesting that there are shared mechanisms between obesity and neurodegeneration. Studies of HPSC-derived hypothalamic neurons may help bridge the mechanistic gulf between human genetic data and organismic phenotypes, revealing new therapeutic targets. ​

SeminarNeuroscience

Magnetic Resonance Measures of Brain Blood Vessels, Metabolic Activity, and Pathology in Multiple Sclerosis

William Rooney
Oregon Health & Science University
Apr 6, 2021

The normally functioning blood-brain barrier (BBB) regulates the transfer of material between blood and brain. BBB dysfunction has long been recognized in multiple sclerosis (MS), and there is considerable interest in quantifying functional aspects of brain blood vessels and their role in disease progression. Parenchymal water content and its association with volume regulation is important for proper brain function, and is one of the key roles of the BBB. There is convincing evidence that the astrocyte is critical in establishing and maintaining a functional BBB and providing metabolic support to neurons. Increasing evidence suggests that functional interactions between endothelia, pericytes, astrocytes, and neurons, collectively known as the neurovascular unit, contribute to brain water regulation, capillary blood volume and flow, BBB permeability, and are responsive to metabolic demands. Increasing evidence suggests altered metabolism in MS brain which may contribute to reduced neuro-repair and increased neurodegeneration. Metabolically relevant biomarkers may provide sensitive readouts of brain tissue at risk of degeneration, and magnetic resonance offers substantial promise in this regard. Dynamic contrast enhanced MRI combined with appropriate pharmacokinetic modeling allows quantification of distinct features of BBB including permeabilities to contrast agent and water, with rate constants that differ by six orders of magnitude. Mapping of these rate constants provides unique biological aspects of brain vasculature relevant to MS.

SeminarNeuroscience

CURE-ND Neurotechnology Workshop - Innovative models of neurodegenerative diseases

Bart De Strooper, Sabine Krabbe, Nir Grossman, Eric Burguière and many more
German Center for Neurodegenerative Diseases, ICM Paris Brain Institute, Mission Lucidity, UK Dementia Research Institute
Feb 23, 2021

One of the major roadblocks to medical progress in the field of neurodegeneration is the absence of animal models that fully recapitulate features of the human diseases. Unprecedented opportunities to tackle this challenge are emerging e.g. from genome engineering and stem cell technologies, and there are intense efforts to develop models with a high translational value. Simultaneously, single-cell, multi-omics and optogenetics technologies now allow longitudinal, molecular and functional analysis of human disease processes in these models at high resolution. During this workshop, 12 experts will present recent progress in the field and discuss: - What are the most advanced disease models available to date? - Which aspects of the human disease do these accurately models, which ones do they fail to replicate? - How should models be validated? Against which reference, which standards? - What are currently the best methods to analyse these models? - What is the field still missing in terms of modelling, and of technologies to analyse disease models? CURE-ND stands for 'Catalysing a United Response in Europe to Neurodegenerative Diseases'. It is a new alliance between the German Center for Neurodegenerative Diseases (DZNE), the Paris Brain Institute (ICM), Mission Lucidity (ML, a partnership between imec, KU Leuven, UZ Leuven and VIB in Belgium) and the UK Dementia Research Institute (UK DRI). Together, these partners embrace a joint effort to accelerate the pace of scientific discovery and nurture breakthroughs in the field of neurodegenerative diseases. This Neurotechnology Workshop is the first in a series of joint events aiming at exchanging expertise, promoting scientific collaboration and building a strong community of neurodegeneration researchers in Europe and beyond.

SeminarNeuroscience

Novel mechanisms of neurogenesis and neural repair

Magdalena Götz
Biomedical Center, Ludwig-Maximilians-University & Institute of Stem Cell Research, Helmholtz Center Munich, Germany
Feb 16, 2021

In order to re-install neurogenesis after loss of neurons upon injury or neurodegeneration, we need to understand the basic principles of neurogenesis. I will first discuss about our discovery of a novel centrosome protein (Camargo et al., 2019) and discuss unpublished work about the great diversity of interphase centrosome proteomes and their relevance for neurodevelopmental disorders. I would then present work on a master regulator of neural stem cell amplification and brain folding (Stahl et al., 2013; Esgleas et al., 2020) to proceed presenting data on utilizing some of these factors for turning astrocytes into neurons. I will present data on the critical role of mitochondria in this conversion process (Gascon et al., 2016, Russo et al., 2020) and how it regulates the speed of conversion also showing unpublished data. If time permits I may touch on recent progress in in vivo reprogramming (Mattugini et al., 2019). Taken together, these data highlight the surprising specificity and importance of organelle diversity from centrosome, nucleolus and mitochondria as key regulators in development and reprogramming.

SeminarNeuroscience

Gene Therapy for Neurodegeneration

Ronald G. Crystal
Cornell Research
Feb 1, 2021

One of the major challenges in developing therapeutics for the neurodegenerative disorders is the blood-brain barrier, limiting the availability of systemically administered therapies such as recombinant proteins or monoclonal antibodies from reaching the brain. Direct central nervous system (CNS) gene therapy using adeno-associated virus vectors expressing a therapeutic protein, monoclonal antibody or inhibiting RNA-coding sequences has two characteristics ideal for therapy of neurodegenerative disorders: circumventing the blood-brain barrier by directly expressing the therapy in the brain and the ability to provide persistent therapy with only a single administration. There are several critical parameters relevant to successful CNS gene therapy, including choice of vector, design of the gene to be expressed, delivery/route of administration, dose and anti-vector immune responses. The presentation will focus on these issues, the current status of clinical trials of gene therapy for neurodegeneration and specific challenges that will need to be overcome to ensure the success of these therapies.

SeminarNeuroscience

Untitled Seminar

Katerina Akassoglou
Gladstone Institute of Neurological Disease, Univesity of California San Francisco
Jan 25, 2021
SeminarNeuroscienceRecording

Understanding how photoreceptor degeneration alters retinal signaling, and how to intervene to rescue vision

Richard Kramer
UC Berkeley
Jan 18, 2021

Age-related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) are vision disorders caused by loss of rod and cone photoreceptors, but downstream retinal neurons also show physiological and morphological changes, resulting in the emergence of hyperactivity and rhythmic firing in many retinal ganglion cells (RGC). We recently discovered that retinoic acid (RA) is a key signal that triggers hyperactivity and that blockers of RA unmask light responses in RGCs that would otherwise be obscured. Recent work is revealing where in the retina circuit RA initiates functional changes. Moreover, interfering with the RA signaling pathway with drug or gene therapy can improve spatial vision in a mouse model of RP, providing a new strategy for enhancing low vision in human RP and AMD.

SeminarNeuroscienceRecording

Phospholipid regulation in cognitive impairment and vascular dementia

Gloria Patricia Cardona-Gómez
School of Medicine at University of Antioquia, Medellín, Colombia
Dec 14, 2020

An imbalance in lipid metabolism in neurodegeneration is still poorly understood. Phospholipids (PLs) have multifactorial participation in vascular dementia as Alzheimer, post-stroke dementia, CADASIL between others. Which include the hyperactivation of phospholipases, mitochondrial stress, peroxisomal dysfunction and irregular fatty acid composition triggering proinflammation in a very early stage of cognitive impairment. The reestablishment of physiological conditions of cholesterol, sphingolipids, phospholipids and others are an interesting therapeutic target to reduce the progression of AD. We propose the positive effect of BACE1 silencing produces a balance of phospholipid profile in desaturase enzymes-depending mode to reduce the inflammation response, and recover the cognitive function in an Alzheimer´s animal and brain stroke models. Pointing out there is a great need for new well-designed research focused in preventing phospholipids imbalance, and their consequent energy metabolism impairment, pro-inflammation and enzymatic over-processing, which would help to prevent unhealthy aging and AD progression.

SeminarNeuroscience

Blood phosphorylated tau as biomarkers for Alzheimer’s disease

Thomas K. Karikari
University of Gothenburg
Dec 10, 2020

Alzheimer's disease (AD) is the most common cause of dementia, and its health and socioeconomic burdens are of major concern. Presently, a definite diagnosis of AD is established by examining brain tissue after death. These examinations focus on two major pathological hallmarks of AD in the brain: (i) amyloid plaques consisting of aggregated amyloid beta (Aβ) peptides and (ii) neurofibrillary tangles made of abnormally phosphorylated tau protein. In living individuals, AD diagnosis relies on two main approaches: (i) brain imaging of tau tangles and Aβ plaques using a technique called positron emission tomography (PET) and (ii) measuring biochemical changes in tau (including phosphorylated tau at threonine-181 [p-tau181]) and the Aβ42 peptide metabolized into CSF. Unlike Aβ42, CSF p-tau181 is highly specific for AD but its usability is restricted by the need of a lumbar puncture. Moreover, PET imaging is expensive and only available in specialised medical centres. Due to these shortcomings, a simple blood test that can detect disease-related changes in the brain is a high priority for AD research, clinical care and therapy testing. In this webinar, I will discuss the discovery of p-tau biomarkers in blood and the biochemistry of how these markers differ from those found in CSF. Furthermore, I will critically review the performance of blood p-tau biomarkers across the AD pathological process and how they associate with and predict Aβ and tau pathophysiological and neuropathological changes. Furthermore, I will evaluate the potential advantages, challenges and context of use of blood p-tau in clinical practice, therapeutic trials and population screening.

SeminarNeuroscience

Neuron-glia interactions in synapse degeneration in Alzheimer's disease

Tara Spires-Jones
UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
Dec 10, 2020

Tara Spires-Jones’ research focuses on the mechanisms and reversibility of neurodegeneration in Alzheimer’s disease, other degenerative brain diseases, and ageing.  The objective of her research group is to understand why synapses and neurons become dysfunctional and die in these diseases in order to develop effective therapeutic strategies. Her work has shown that soluble forms of the pathological proteins amyloid beta and tau contribute to synapse degeneration, and that lowering levels of these proteins can prevent and reverse phenotypes in model systems. Further, she has pioneered high-resolution imaging techniques in human post-mortem brain and found evidence that these proteins accumulate in synapses in human disease.

SeminarNeuroscienceRecording

Development and Application of PET Imaging for Dementia Research

Franklin Aigbirhio
University of Cambridge
Nov 3, 2020

Molecular imaging using Positron Emission Tomography (PET) has become a major biomedical imaging technology. Its application towards characterisation of biochemical processes in disease could enable early detection and diagnosis, development of novel therapies and treatment evaluation. The technology is underpinned by the use of imaging probes radiolabelled with short-lived radioisotopes which can be specific and selective for biological targets in vivo e.g. markers for receptors, protein deposits, enzymes and metabolism. My talk will focus on the increasing development and application of PET imaging to clinical research in neurodegenerative diseases, for which it can be applied to delineate and understand the various pathological components of these disorders.

SeminarNeuroscience

Emergent scientists discuss Alzheimer's disease

Christiana Bjørkli, Siddharth Ramanan
Norwegian University of Science and Technology, University of Cambridge
Oct 20, 2020

This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.

SeminarNeuroscience

Neurological consequences of COVID-19

Harriet Ball, Liz Coulthard, Claire Rice
University of Bristol
Oct 20, 2020

The speakers will outline how neurologists in Bristol have been research-active during the COVID-19 pandemic including our contribution to national and international surveillance programmes as well as initiating research studies such as an evaluation of the impact of COVID anxiety on sleep and neurodegeneration and determining whether vascular changes in the eye predict COVID-19 severity.

SeminarNeuroscienceRecording

Microglia function and dysfunction in Alzheimer’s disease

Beth Stevens
Harvard Medical School
Oct 8, 2020

Emerging genetic studies of late-onset Alzheimer’s Disease implicate the brain’s resident macrophages in the pathogenesis of AD. More than half the risk genes associated with late-onset AD are selectively expressed in microglia and peripheral myeloid cells; yet we know little about the underlying biology or how myeloid cells contribute to AD pathogenesis. Using single-cell RNA sequencing and spatial transcriptomics we identified molecular signatures that can be used to localize and monitor distinct microglia functional states in the human and mouse brain. Our results show that microglia assume diverse functional states in development, aging and injury, including populations corresponding to known microglial functions including proliferation, migration, inflammation, and synaptic phagocytosis. We identified several innate immune pathways by which microglia recognize and prune synapses during development and in models of Alzheimer’s disease, including the classical complement cascade. Illuminating the mechanisms by which developing synaptic circuits are sculpted is providing important insight on understanding how to protect synapses in Alzheimer’s and other neurodegenerative diseases of synaptic dysfunction.

SeminarNeuroscienceRecording

Transposable element activation in Alzheimer's disease and related tauopathies

Bess Frost
Barshop Institute for Longevity and Aging Studies
Oct 1, 2020

Transposable elements, known colloquially as ‘jumping genes’, constitute approximately 45% of the human genome. Cells utilize epigenetic defenses to limit transposable element jumping, including formation of silencing heterochromatin and generation of piwi-interacting RNAs (piRNAs), small RNAs that facilitate clearance of transposable element transcripts. We have utilized fruit flies, mice and postmortem human brain samples to identify transposable element dysregulation as a key mediator of neuronal death in tauopathies, a group of neurodegenerative disorders that are pathologically characterized by deposits of tau protein in the brain. Mechanistically, we find that heterochromatin decondensation and reduction of piwi and piRNAs drive transposable element dysregulation in tauopathy. We further report a significant increase in transcripts of the endogenous retrovirus class of transposable elements in human Alzheimer’s disease and progressive supranuclear palsy, suggesting that transposable element dysregulation is conserved in human tauopathy. Taken together, our data identify heterochromatin decondensation, piwi and piRNA depletion and consequent transposable element dysregulation as a pharmacologically targetable, mechanistic driver of neurodegeneration in tauopathy.

SeminarNeuroscience

Carnosine negatively modulates pro-oxidant activities of M1 peripheral macrophages and prevents neuroinflammation induced by amyloid-β in microglial cells

Giuseppe Caruso
Department of Drug Sciences, University of Catania
Oct 1, 2020

Carnosine is a natural dipeptide widely distributed in mammalian tissues and exists at particularly high concentrations in skeletal and cardiac muscles and brain. A growing body of evidence shows that carnosine is involved in many cellular defense mechanisms against oxidative stress, including inhibition of amyloid-β (Aβ) aggregation, modulation of nitric oxide (NO) metabolism, and scavenging both reactive nitrogen and oxygen species. Different types of cells are involved in the innate immune response, with macrophage cells representing those primarily activated, especially under different diseases characterized by oxidative stress and systemic inflammation such as depression and cardiovascular disorders. Microglia, the tissue-resident macrophages of the brain, are emerging as a central player in regulating key pathways in central nervous system inflammation; with specific regard to Alzheimer’s disease (AD) these cells exert a dual role: on one hand promoting the clearance of Aβ via phagocytosis, on the other hand increasing neuroinflammation through the secretion of inflammatory mediators and free radicals. The activity of carnosine was tested in an in vitro model of macrophage activation (M1) (RAW 264.7 cells stimulated with LPS + IFN-γ) and in a well-validated model of Aβ-induced neuroinflammation (BV-2 microglia treated with Aβ oligomers). An ample set of techniques/assays including MTT assay, trypan blue exclusion test, high performance liquid chromatography, high-throughput real-time PCR, western blot, atomic force microscopy, microchip electrophoresis coupled to laser-induced fluorescence, and ELISA aimed to evaluate the antioxidant and anti-inflammatory activities of carnosine was employed. In our experimental model of macrophage activation (M1), therapeutic concentrations of carnosine exerted the following effects: 1) an increased degradation rate of NO into its non-toxic end-products nitrite and nitrate; 2) the amelioration of the macrophage energy state, by restoring nucleoside triphosphates and counterbalancing the changes in ATP/ADP, NAD+/NADH and NADP+/NADPH ratio obtained by LPS + IFN-γ induction; 3) a reduced expression of pro-oxidant enzymes (NADPH oxidase, Cyclooxygenase-2) and of the lipid peroxidation product malondialdehyde; 4) the rescue of antioxidant enzymes expression (Glutathione peroxidase 1, Superoxide dismutase 2, Catalase); 5) an increased synthesis of transforming growth factor-β1 (TGF-β1) combined with the negative modulation of interleukines 1β and 6 (IL-1β and IL-6), and 6) the induction of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). In our experimental model of Aβ-induced neuroinflammation, carnosine: 1) prevented cell death in BV-2 cells challenged with Aβ oligomers; 2) lowered oxidative stress by decreasing the expression of inducible nitric oxide synthase and NADPH oxidase, and the concentrations of nitric oxide and superoxide anion; 3) decreased the secretion of pro-inflammatory cytokines such as IL-1β simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1; 4) prevented Aβ-induced neurodegeneration in primary mixed neuronal cultures challenged with Aβ oligomers and these neuroprotective effects was completely abolished by SB431542, a selective inhibitor of type-1 TGF-β receptor. Overall, our data suggest a novel multimodal mechanism of action of carnosine underlying its protective effects in macrophages and microglia and the therapeutic potential of this dipeptide in counteracting pro-oxidant and pro-inflammatory phenomena observed in different disorders characterized by elevated levels of oxidative stress and inflammation such as depression, cardiovascular disorders, and Alzheimer’s disease.

SeminarNeuroscience

Aging Brain Initiative Symposium: Cellular & Molecular Mechanisms of Neurodegeneration

David Atwell, Anne Brunet, Diane Chan, Don Cleveland, Marco Colonna, Valina Dawson, Myriam Heiman, Jonathan Kipnis, Lennart Mucke, Dorothy Schafer
Sep 22, 2020

The Aging Brain Initiative is an ambitious interdisciplinary effort by MIT focusing on understanding neurodegeneration and efforts to find hallmarks of aging, both in health and disease. The Initiative is broad, made up of scientists in several areas, including systems neuroscience, cell biology, engineering and computational biology, with core investigators from the Departments of Biology, Brain & Cognitive Sciences, Biological Engineering, and Computer Science & Artificial Intelligence Labs. "The theme of this symposium is Cellular & Molecular Mechanisms of Neurodegeneration.

SeminarNeuroscience

More than Bystanders in Dementia, Learning What Microglia Do

Soyon Hong
UK Dementia Research Institute at UCL
Aug 6, 2020

Genome-wide association studies implicate microglia in Alzheimer’s disease (AD) pathogenesis, but how microglia contribute to cognitive decline in AD is unclear. Emerging research suggests microglia, the resident macrophages of the central nervous system, to be active participants in brain wiring. One mechanism by which microglia help eliminate synapses is through the classical complement pathway (C1q, CR3/C3). Data from multiple laboratories collectively suggest that there may be an aberrant reactivation of the complement-dependent pruning pathway in multiple models of neurologic diseases including AD. These data altogether suggest that microglia participate in synaptic pathology. However, how and which synapses are targeted are unknown. Furthermore, whether microglia directly impair synaptic function is unknown. Primary goals of my laboratory are to understand how higher cognitive functions such as learning and memory involve microglial biology in the healthy adult brain and dissect immune mechanisms behind the region-specific vulnerability of synapse loss and neuronal dysfunction during disease. Mechanistic insight into local signals that regulate neuroglia interactions will be key to developing potential therapeutic avenues to target in disease.

SeminarNeuroscienceRecording

CRISPR-based functional genomics in iPSC-based models of brain disease

Martin Kampmann
UCSF Department of Biochemistry and Biophysics
Jul 30, 2020

Human genes associated with brain-related diseases are being discovered at an accelerating pace. A major challenge is an identification of the mechanisms through which these genes act, and of potential therapeutic strategies. To elucidate such mechanisms in human cells, we established a CRISPR-based platform for genetic screening in human iPSC-derived neurons, astrocytes and microglia. Our approach relies on CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa), in which a catalytically dead version of the bacterial Cas9 protein recruits transcriptional repressors or activators, respectively, to endogenous genes to control their expression, as directed by a small guide RNA (sgRNA). Complex libraries of sgRNAs enable us to conduct genome-wide or focused loss-of-function and gain-of-function screens. Such screens uncover molecular players for phenotypes based on survival, stress resistance, fluorescent phenotypes, high-content imaging and single-cell RNA-Seq. To uncover disease mechanisms and therapeutic targets, we are conducting genetic modifier screens for disease-relevant cellular phenotypes in patient-derived neurons and glia with familial mutations and isogenic controls. In a genome-wide screen, we have uncovered genes that modulate the formation of disease-associated aggregates of tau in neurons with a tauopathy-linked mutation (MAPT V337M). CRISPRi/a can also be used to model and functionally evaluate disease-associated changes in gene expression, such as those caused by eQTLs, haploinsufficiency, or disease states of brain cells. We will discuss an application to Alzheimer’s Disease-associated genes in microglia.

SeminarNeuroscienceRecording

Mechanisms of pathogenesis in the tauopathies

Karen Duff
UK Dementia Research Institute at UCL
Jul 23, 2020

The distribution of pathological tau in the brain of patients with AD is highly predicable, and as disease worsens, it spreads transynaptically from initial regions of vulnerability. The reason why only some neurons are vulnerable to the accumulation and propagation of pathological forms of tau, and the mechanisms by which tauopathy spreads through the brain are not well understood. Using a combination of immunohistochemistry and computational analysis we have examined pathway differences between vulnerable and resistant neurons. How tau spreads across a synapse has been examined in vitro using different model systems. Our data show that dysregulation of tau homeostasis determines the cellular and regional vulnerability of specific neurons to tau pathology (H. Fu et al. 2019. Nat. Neuro. 22 (1):47-56) and that deficits in tau homeostasis can exacerbate tau accumulation and propagation. Aging appears to impact similar neuronal populations. Mechanisms and consequences of abnormal tau accumulation within neurons, its transfer between cells, pathology propagation and therapeutic opportunities will be discussed.

SeminarNeuroscienceRecording

Novel immunotherapy to treat Alzheimer’s disease and Dementia: from curiosity-driven research to prospect of therapy

Michal Schwartz
Weizmann Institute of Science
Jun 29, 2020
ePosterNeuroscience

The interplay between sensory and cognitive neurodegeneration: cochlear vulnerability to noise exposure in a model of Alzheimer’s disease

Anna Pisani, Fabiola Paciello, Rolando Rolesi, Raffaele Montuoro, Gaetano Paludetti, Claudio Grassi, Anna Rita Fetoni
ePosterNeuroscience

The role of the CHIP/STUB1 pathway on mechanisms of neurodegeneration

Dominika Pankanin, Erisa Nita, Jakub Faktor, Ailish Tynan, Artur Piróg, Georges Bedran, Irena Dapic, Sachin Kote, Kathryn Ball, Ted Hupp
ePosterNeuroscience

Neurodegeneration risk factors’ interplay: Characterization of APOE3 and APOE4 genotype upon chronic inflammation

Séfora Barberà Parada, Judit Biosca-Brull, Raquel Gabaldón-Díaz, Rocío Rodulfo-Cárdenas, Maria Cabré, Jordi Blanco, Maria Teresa Colomina

FENS Forum 2024

ePosterNeuroscience

Acute genetic elimination of a synaptic co-chaperone to study and to revert presynaptic dysfunction and neurodegeneration

Fátima Rubio-Pastor, Santiago López-Begines, Nozha Borjini, Pablo García-Junco-Clemente, Rafael Fernández-Chacón
ePosterNeuroscience

An advanced nanozyme to prevent ROS-induced neurodegeneration of the retina

Sara Cupini, Alessio Cavalli, Stefano Di Marco, Elisabetta Colombo, Luca Boselli, Valentina Mastronardi, Valentina Castagnola, Pier Paolo Pompa, Fabio Benfenati
ePosterNeuroscience

Biological characterisation of new microneurotrophin mimetics in countering neurodegeneration

Despoina Charou, Thanasis Rogdakis, Alessia Latorrata, Theodora Calogeropoulou, Achille Gravanis, Ioannis Charalampopoulos
ePosterNeuroscience

Cultured mouse dopaminergic neurons as a model system to study alpha-Synuclein aggregation and neurodegeneration in Parkinson’s disease

Patrick Pierre Michel, Aurore Tourville, David Akbar, Olga Corti, Jochen H M Prehn, Ronald Melki, Stephane Hunot
ePosterNeuroscience

Dietary impacts on neuronal function and learning capacity in a Drosophila model of neurodegeneration

Vladyslava Yarosh, Joern Steinert, William Neil, Ellie Herniman, Sanjana Mamidipalli, Aelfwin Stone, Mihir Kocherlacota
ePosterNeuroscience

Dopamine-dependent HDAC regulation and its role in postsynaptic neurodegeneration

Stefano Espinoza, Placido Illiano, Cinzia Magagnotti, Andrea Contestabile, Angela Bachi, Raul R. Gainetdinov, Giuseppe Ronzitti
ePosterNeuroscience

Effect of Repaglinide on symptoms associated with aging and neurodegeneration in C.elegans and Mus Musculus

Inés Sánchez Romero
ePosterNeuroscience

The elephant in the room: A tissue-engineered 3D model to explore astrocyte role in neurodegeneration

Miguel Morais, Eva D. Carvalho, Marco Araújo, Cristina Barrias, Ana P. Pego
ePosterNeuroscience

Extracellular calcium release mediates polarized motility and displacement of microglial cells in a scenario of parkinsonian neurodegeneration

Meritxell R. Roig-Martínez, Paola Casanova, Elena Saavedra, Irina Freitag, Paula Martínez, Roser Masgrau, Carlos Barcia
ePosterNeuroscience

GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegeneration and lipid dyshomeostasis in mice

Loris Russo, Ilaria Gregorio, Pietro Barbacini, Dario Bizzotto, Paola Braghetta, Enrico Moro, Cecilia Gelfi, Matilde Cescon
ePosterNeuroscience

IFNAR1C291* expression induces neurodegeneration in vivo through impairments in Parkin-mediated mitophagy

Lluis Riera Ponsati, Clara Mayer, Marina Lukenic, Emilie Tresse, Shohreh Issazadeh-Navikas
ePosterNeuroscience

The importance of S-depalmitoylation in neurodegeneration is emphasized by the identification of CLN5 as a new type of cysteine-based S-depalmitoylase

Robert Steinfeld, Anna Luebben, Daniel Bender, Stefan Becker, Lisa Crowther, Cristina Bellotti, Andreas Stäuble, Ralph Krätzner
ePosterNeuroscience

Links between vesicular trafficking defects, impaired mitophagy and neurodegeneration

Adeena Shafique, Chiara Frige, Edoardo Pedrini, Marta Lualdi, Tiziana Alberio, Mauro Fasano
ePosterNeuroscience

Loss of kinesin KIF2A causes premature neurodegeneration

Nuria Ruiz Reig, Georges Chehade, Janne Hakanen, Keimpe Wierda, Joris De Wit, Laurent Nguyen, Philippe Gailly, Fadel Tissir
ePosterNeuroscience

ER morphology and Ca2+ handling: unraveling their role in neurodegeneration in Drosophila models of HSP

Sonia Sonda, Manuela Santalla, Nelly Redolfi, Nicola Vajente, Elisa Greotti, Diana Pendin
ePosterNeuroscience

NFKB-mediated tolerance in a cellular model of neuroinflammation: implications for Parkinson's disease dopaminergic neurodegeneration

Irina Freitag, Maider Usandizaga, Meritxell Roig, Paula Martínez, Paola Casanova, Carlos Barcia
ePosterNeuroscience

Nocturnin’s role in oxidative stress mediated neurodegeneration

Anne Ojo, Carla Green
ePosterNeuroscience

O-Cyclic Phytosphingosine-1-Phosphate protects against neurodegeneration in the Parkinson’s disease mouse model

Myeong Ok Kim, Hyeon Jin Lee, Jun Sung Park, Min Woo Kim, Kyong Hwan Choe, Bart P. Rutten
ePosterNeuroscience

Role of mitochondrial fission-fusion dynamics in progressive neurodegeneration and memory deficit after traumatic brain injury

Preethy S. Sridharan, Yeojung Koh, Emiko Miller, Kathryn Franke, Matasha Dhar, Meredith Whitney, Edwin Vásquez-Rosa, Min-Kyoo Shin, Xin Qi, Andrew Pieper
ePosterNeuroscience

Sexually dimorphic neurodegeneration and neuroinflammation in the human olfactory bulb in Alzheimer’s disease

Alicia FLORES-CUADRADO, Daniel SAIZ-SANCHEZ, - MOHEDANO-MORIANO, - Lucian, - RUIZ-AGUILERA, - MARTINEZ-MARCOS, Isabel UBEDA-BANON
ePosterNeuroscience

Uncovering the signaling pathways to cognitive impairments and neurodegeneration in Down syndrome by cell profiling of the locus coeruleus in trisomic mice

Marta Fructuoso, Ammara Mohammad, Riwan Brillet, David Akbar, Justine Guegan, Laura Xicota, Marie-Claude Potier
ePosterNeuroscience

Calcium released by dying neurons mediates Iba-1 dependent polarization of microglial cells in Parkinsonian neurodegeneration

Meritxell Roig Martínez, Paola Virginia Casanova, Elena Saavedra-López, Irina Freitag, Paula Martínez-Remedios, Carlos Barcia

FENS Forum 2024

ePosterNeuroscience

Cell-specific regulation of neuronal and glial glucose metabolism by neurodegeneration-associated protein TDP-43

Ismail Gbadamosi, Lesley Motherwell, Izabela Lepiarz-Raba, Dorota Dymkowska, Ali Jawaid

FENS Forum 2024

ePosterNeuroscience

Cerebellar neurodegeneration in phospholipid flippases ATP8A1/ATP8A2 double knock-out mice can be ameliorated by inactivating a microglial PS receptor

Shu Tokunaga, Yuta Umemura, Muneyuki Kawase, Tsuzumi Nakajima, Mana Kato, Chiharu Miyajima, Hisashi Oishi, Mitsuharu Hattori

FENS Forum 2024

ePosterNeuroscience

Is dysfunctional neuronal differentiation the link between diet and neurodegeneration?

Imogen Targett, Tim Craig

FENS Forum 2024

ePosterNeuroscience

Effect of DREAM inhibition on aging and neurodegeneration

Inés Sánchez, Juan Antonio Fernández Cabrera, José Manuel Hernández Curiel, Ángel Manuel Carrión Rodríguez

FENS Forum 2024

ePosterNeuroscience

Epigenetic modulation of astrocyte reactivity to prevent neurodegeneration

Andrea Villoria-González, Karin Preindl, Johannes Berger, Isabelle Weinhofer

FENS Forum 2024

ePosterNeuroscience

Exacerbation of Alzheimer’s neurodegeneration due to Aβ–NETosis cross-talk is rescued by G6PD pharmacological inhibition in neutrophils

Laura Marchetti, Chiara Giacomelli, Martina Nencioni, Allegra Coppini, Alina Sîrbu, Ana Koperniku, Vittoria Raffa, Corrado Priami, Daria Mochly-Rosen, Maria Letizia Trincavelli

FENS Forum 2024

ePosterNeuroscience

GPR37 processing in neurodegeneration: A potential marker for Parkinson’s disease progression rate

Josep Argerich, Leonardo D. Garma, Marc López-Cano, Paula Álvarez-Montoya, Laura Gómez-Acero, Víctor Fernández-Dueñas, Ana Muñoz-Manchado, Ester Aso, Adam Boxer, Pol Andres-Benito, Per Svenningsson, Francisco Ciruela

FENS Forum 2024

ePosterNeuroscience

An IgLON5 knockout mouse model results in mild behavioral alterations, without neurodegeneration

Ana Beatriz Serafim, Jon Landa, Mercedes Alba, Estibaliz Maudes, Laura Molina-Porcel, Anna Garcia-Serra, Francesco Mannara, Josep Dalmau, Francesc Graus, Lidia Sabater

FENS Forum 2024

ePosterNeuroscience

The impact of neurodegeneration on the electrical activity of brain tissue: Multielectrode array analysis

Andrijana Angelovski, Barbora Liščáková, Olga Švecová, Hana Hříbková, Jiří Sedmík, Dáša Bohačiaková, Petr Klimeš, Martina Kolajová, Milan Brázdil, Markéta Bébarová

FENS Forum 2024

ePosterNeuroscience

The interplay between mTORC2 and oxidative stress in neurotoxic models of neurodegeneration

Marija Jeremic, Andjelka Isakovic, Vladimir Trajkovic, Ivanka Markovic

FENS Forum 2024

ePosterNeuroscience

PML is involved in microglia functions in neuroinflammation and neurodegeneration

Sirago Spanou, Ioanna Pandi, Maria Protopapa, Takis Makatounakis, Panayiota Poirazi, Joseph Papamatheakis, Androniki Kretsovali

FENS Forum 2024

ePosterNeuroscience

The Janus faces of nanoparticles at the neurovascular unit: A double-edged sword in neurodegeneration

Giulia Terribile, Sara Di Girolamo, Paolo Spaiardi, Gerardo Biella, Silvia Sesana, Francesca Re, Giulio Alfredo Sancini

FENS Forum 2024

ePosterNeuroscience

Longitudinal assessment of neurodegeneration in a mouse model of tauopathy using multiparametric magnetic resonance imaging

Annacarla Martucci, Franca Orsini, Edoardo Micotti, Rosaria Pascente, Gianluigi Forloni, Luana Fioriti

FENS Forum 2024

ePosterNeuroscience

Microglial senescence: Unraveling the link to aging-related neurodegeneration in Alzheimer's disease

Gyun Jee Song, Deepak Prasad Gupta, Sung Hee Park, Ji Young Lee, Young-Sun Lee

FENS Forum 2024

ePosterNeuroscience

Neuronal network dysfunction and neurodegeneration mediated by TLR7/8-activated microglia depend on the immunological context

Lennart Söder, Andrea Lewen, Amr Elgez, Babak Khodaie, Oliver Kann

FENS Forum 2024

neurodegeneration coverage

90 items

Seminar50
ePoster40

Share your knowledge

Know something about neurodegeneration? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how neurodegeneration research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.