TopicNeuro

neuronal model

3 Seminars2 ePosters

Latest

SeminarNeuroscienceRecording

Introducing dendritic computations to SNNs with Dendrify

Michalis Pagkalos
IMBB FORTH
Sep 7, 2022

Current SNNs studies frequently ignore dendrites, the thin membranous extensions of biological neurons that receive and preprocess nearly all synaptic inputs in the brain. However, decades of experimental and theoretical research suggest that dendrites possess compelling computational capabilities that greatly influence neuronal and circuit functions. Notably, standard point-neuron networks cannot adequately capture most hallmark dendritic properties. Meanwhile, biophysically detailed neuron models are impractical for large-network simulations due to their complexity, and high computational cost. For this reason, we introduce Dendrify, a new theoretical framework combined with an open-source Python package (compatible with Brian2) that facilitates the development of bioinspired SNNs. Dendrify, through simple commands, can generate reduced compartmental neuron models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions to network-level functions while paving the way for developing more realistic neuromorphic systems.

SeminarNeuroscienceRecording

A neuronal model for learning to keep a rhythmic beat

John Rinzel
New York University
Apr 21, 2021

When listening to music, we typically lock onto and move to a beat (1-6 Hz). Behavioral studies on such synchronization (Repp 2005) abound, yet the neural mechanisms remain poorly understood. Some models hypothesize an array of self-sustaining entrainable neural oscillators that resonate when forced with rhythmic stimuli (Large et al. 2010). In contrast, our formulation focuses on event time estimation and plasticity: a neuronal beat generator that adapts its intrinsic frequency and phase to match the extermal rhythm. The model quickly learns new rhythms, within a few cycles as found in human behavior. When the stimulus is removed the beat generator continues to produce the learned rhythm in accordance with a synchronization continuation task.

SeminarNeuroscienceRecording

Spanning the arc between optimality theories and data

Gasper Tkacik
Institute of Science and Technology Austria
Jun 2, 2020

Ideas about optimization are at the core of how we approach biological complexity. Quantitative predictions about biological systems have been successfully derived from first principles in the context of efficient coding, metabolic and transport networks, evolution, reinforcement learning, and decision making, by postulating that a system has evolved to optimize some utility function under biophysical constraints. Yet as normative theories become increasingly high-dimensional and optimal solutions stop being unique, it gets progressively hard to judge whether theoretical predictions are consistent with, or "close to", data. I will illustrate these issues using efficient coding applied to simple neuronal models as well as to a complex and realistic biochemical reaction network. As a solution, we developed a statistical framework which smoothly interpolates between ab initio optimality predictions and Bayesian parameter inference from data, while also permitting statistically rigorous tests of optimality hypotheses.

ePosterNeuroscience

Neuronal impairment and treatment prospects in Smith Magenis syndrome: Findings from patient-specific neuronal model

Ritu Nayak, Utkarsh Tripathi, Idan Rosh, Shani Stern

FENS Forum 2024

ePosterNeuroscience

Synaptic dysfunction in a hIPSC-derived neuronal model of ALS and FTD

Rachel Jackson, Matthew J Keuss, Peter Harley, Juan Burrone, Pietro Fratta

FENS Forum 2024

neuronal model coverage

5 items

Seminar3
ePoster2
Domain spotlight

Explore how neuronal model research is advancing inside Neuro.

Visit domain