TopicNeuro

neurostimulation

4 Seminars2 ePosters

Latest

SeminarNeuroscienceRecording

Functional Plasticity in the Language Network – evidence from Neuroimaging and Neurostimulation

Gesa Hartwigsen
University of Leipzig, Germany
May 20, 2025

Efficient cognition requires flexible interactions between distributed neural networks in the human brain. These networks adapt to challenges by flexibly recruiting different regions and connections. In this talk, I will discuss how we study functional network plasticity and reorganization with combined neurostimulation and neuroimaging across the adult life span. I will argue that short-term plasticity enables flexible adaptation to challenges, via functional reorganization. My key hypothesis is that disruption of higher-level cognitive functions such as language can be compensated for by the recruitment of domain-general networks in our brain. Examples from healthy young brains illustrate how neurostimulation can be used to temporarily interfere with efficient processing, probing short-term network plasticity at the systems level. Examples from people with dyslexia help to better understand network disorders in the language domain and outline the potential of facilitatory neurostimulation for treatment. I will also discuss examples from aging brains where plasticity helps to compensate for loss of function. Finally, examples from lesioned brains after stroke provide insight into the brain’s potential for long-term reorganization and recovery of function. Collectively, these results challenge the view of a modular organization of the human brain and argue for a flexible redistribution of function via systems plasticity.

SeminarNeuroscienceRecording

Learning with multimodal enrichment

Katharina von Kriegstein
Technical University Dresden
Oct 5, 2023
SeminarNeuroscience

Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation

Mark Buckley
Oxford University
May 5, 2023

Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.

SeminarNeuroscience

Neuropunk revolution and its implementation via real-time neurosimulations and their integrations

Maxim Talanov
B-Rain Labs LLC, ITIS KFU
Oct 21, 2021

In this talk I present the perspectives of the "neuropunk revolution'' technologies. One could understand the "neuropunk revolution'' as the integration of real-time neurosimulations into biological nervous/motor systems via neurostimulation or artificial robotic systems via integration with actuators. I see the added value of the real-time neurosimulations as bridge technology for the set of developed technologies: BCI, neuroprosthetics, AI, robotics to provide bio-compatible integration into biological or artificial limbs. Here I present the three types of integration of the "neuropunk revolution'' technologies as inbound, outbound and closed-loop in-outbound systems. I see the shift of the perspective of how we see now the set of technologies including AI, BCI, neuroprosthetics and robotics due to the proposed concept for example the integration of external to a body simulated part of the nervous system back into the biological nervous system or muscles.

ePosterNeuroscience

Development and application of L-shaped vertical micro-coils for in vivo neurostimulation in two-photon microscopy

Xiyuan Liu, Kayeon Kim, Changsi Cai, Shelley Fried, Anpan Han

FENS Forum 2024

ePosterNeuroscience

Experimental model for strain-induced mechanical neurostimulation on human progenitor neurons

Erdost Yildiz, Mertcan Han, Linda Werneck, Marc-Andre Keip, Metin Sitti, Michael Ortiz

FENS Forum 2024

neurostimulation coverage

6 items

Seminar4
ePoster2
Domain spotlight

Explore how neurostimulation research is advancing inside Neuro.

Visit domain