TopicNeuroscience

object categorization

Content Overview
3Total items
2Seminars
1ePoster

Latest

SeminarNeuroscienceRecording

Building System Models of Brain-Like Visual Intelligence with Brain-Score

Martin Schrimpf
MIT
Oct 5, 2022

Research in the brain and cognitive sciences attempts to uncover the neural mechanisms underlying intelligent behavior in domains such as vision. Due to the complexities of brain processing, studies necessarily had to start with a narrow scope of experimental investigation and computational modeling. I argue that it is time for our field to take the next step: build system models that capture a range of visual intelligence behaviors along with the underlying neural mechanisms. To make progress on system models, we propose integrative benchmarking – integrating experimental results from many laboratories into suites of benchmarks that guide and constrain those models at multiple stages and scales. We show-case this approach by developing Brain-Score benchmark suites for neural (spike rates) and behavioral experiments in the primate visual ventral stream. By systematically evaluating a wide variety of model candidates, we not only identify models beginning to match a range of brain data (~50% explained variance), but also discover that models’ brain scores are predicted by their object categorization performance (up to 70% ImageNet accuracy). Using the integrative benchmarks, we develop improved state-of-the-art system models that more closely match shallow recurrent neuroanatomy and early visual processing to predict primate temporal processing and become more robust, and require fewer supervised synaptic updates. Taken together, these integrative benchmarks and system models are first steps to modeling the complexities of brain processing in an entire domain of intelligence.

SeminarNeuroscience

A computational explanation for domain specificity in the human brain

Katharina Dobs
University Giessen
Nov 25, 2020

Many regions of the human brain conduct highly specific functions, such as recognizing faces, understanding language, and thinking about other people’s thoughts. Why might this domain specific organization be a good design strategy for brains, and what is the origin of domain specificity in the first place? In this talk, I will present recent work testing whether the segregation of face and object perception in human brains emerges naturally from an optimization for both tasks. We trained artificial neural networks on face and object recognition, and found that networks were able to perform both tasks well by spontaneously segregating them into distinct pathways. Critically, networks neither had prior knowledge nor any inductive bias about the tasks. Furthermore, networks optimized on tasks which apparently do not develop specialization in the human brain, such as food or cars, and object categorization showed less task segregation. These results suggest that functional segregation can spontaneously emerge without a task-specific bias, and that the domain-specific organization of the cortex may reflect a computational optimization for the real-world tasks humans solve.

ePosterNeuroscience

Using retinotopic mapping in convolutional neural networks for object categorization leads to saliency-based visual object localization

Jean-Nicolas Jérémie, Emmanuel Dauce, Laurent Perrinet

FENS Forum 2024

object categorization coverage

3 items

Seminar2
ePoster1

Share your knowledge

Know something about object categorization? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how object categorization research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.