TopicNeuro

optical image disparity

1 Seminar

Latest

SeminarNeuroscienceRecording

Seeing the world through moving photoreceptors - binocular photomechanical microsaccades give fruit fly hyperacute 3D-vision

Mikko Juusola
University of Sheffield
Aug 1, 2022

To move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors.

optical image disparity coverage

1 items

Seminar1
Domain spotlight

Explore how optical image disparity research is advancing inside Neuro.

Visit domain