TopicNeuro

optimal inference

2 Seminars1 ePoster

Latest

SeminarNeuroscienceRecording

Suboptimal human inference inverts the bias-variance trade-off for decisions with asymmetric evidence

Tahra Eissa
University of Colorado Boulder
Dec 1, 2021

Solutions to challenging inference problems are often subject to a fundamental trade-off between bias (being systematically wrong) that is minimized with complex inference strategies and variance (being oversensitive to uncertain observations) that is minimized with simple inference strategies. However, this trade-off is based on the assumption that the strategies being considered are optimal for their given complexity and thus has unclear relevance to the frequently suboptimal inference strategies used by humans. We examined inference problems involving rare, asymmetrically available evidence, which a large population of human subjects solved using a diverse set of strategies that were suboptimal relative to the Bayesian ideal observer. These suboptimal strategies reflected an inversion of the classic bias-variance trade-off: subjects who used more complex, but imperfect, Bayesian-like strategies tended to have lower variance but high bias because of incorrect tuning to latent task features, whereas subjects who used simpler heuristic strategies tended to have higher variance because they operated more directly on the observed samples but displayed weaker, near-normative bias. Our results yield new insights into the principles that govern individual differences in behavior that depends on rare-event inference, and, more generally, about the information-processing trade-offs that are sensitive to not just the complexity, but also the optimality of the inference process.

SeminarNeuroscienceRecording

Design principles of adaptable neural codes

Ann Hermunstad
Janelia Research Campus
May 5, 2021

Behavior relies on the ability of sensory systems to infer changing properties of the environment from incoming sensory stimuli. However, the demands that detecting and adjusting to changes in the environment place on a sensory system often differ from the demands associated with performing a specific behavioral task. This necessitates neural coding strategies that can dynamically balance these conflicting needs. I will discuss our ongoing theoretical work to understand how this balance can best be achieved. We connect ideas from efficient coding and Bayesian inference to ask how sensory systems should dynamically allocate limited resources when the goal is to optimally infer changing latent states of the environment, rather than reconstruct incoming stimuli. We use these ideas to explore dynamic tradeoffs between the efficiency and speed of sensory adaptation schemes, and the downstream computations that these schemes might support. Finally, we derive families of codes that balance these competing objectives, and we demonstrate their close match to experimentally-observed neural dynamics during sensory adaptation. These results provide a unifying perspective on adaptive neural dynamics across a range of sensory systems, environments, and sensory tasks.

ePosterNeuroscience

Network dynamics implement optimal inference in a flexible timing task

John Schwarcz, Eran Lottem, Jonathan Kadmon

COSYNE 2023

optimal inference coverage

3 items

Seminar2
ePoster1
Domain spotlight

Explore how optimal inference research is advancing inside Neuro.

Visit domain