← Back

Orientation Tuning

Topic spotlight
TopicNeuro

orientation tuning

Discover seminars, jobs, and research tagged with orientation tuning across Neuro.
4 curated items4 Seminars
Updated almost 4 years ago
4 items · orientation tuning

Latest

4 results
SeminarNeuroscience

Understanding the role of prediction in sensory encoding

Jason Mattingley
Monash Biomedical Imaging
Jul 29, 2021

At any given moment the brain receives more sensory information than it can use to guide adaptive behaviour, creating the need for mechanisms that promote efficient processing of incoming sensory signals. One way in which the brain might reduce its sensory processing load is to encode successive presentations of the same stimulus in a more efficient form, a process known as neural adaptation. Conversely, when a stimulus violates an expected pattern, it should evoke an enhanced neural response. Such a scheme for sensory encoding has been formalised in predictive coding theories, which propose that recent experience establishes expectations in the brain that generate prediction errors when violated. In this webinar, Professor Jason Mattingley will discuss whether the encoding of elementary visual features is modulated when otherwise identical stimuli are expected or unexpected based upon the history of stimulus presentation. In humans, EEG was employed to measure neural activity evoked by gratings of different orientations, and multivariate forward modelling was used to determine how orientation selectivity is affected for expected versus unexpected stimuli. In mice, two-photon calcium imaging was used to quantify orientation tuning of individual neurons in the primary visual cortex to expected and unexpected gratings. Results revealed enhanced orientation tuning to unexpected visual stimuli, both at the level of whole-brain responses and for individual visual cortex neurons. Professor Mattingley will discuss the implications of these findings for predictive coding theories of sensory encoding. Professor Jason Mattingley is a Laureate Fellow and Foundation Chair in Cognitive Neuroscience at The University of Queensland. His research is directed toward understanding the brain processes that support perception, selective attention and decision-making, in health and disease.

SeminarNeuroscience

Circuit dysfunction and sensory processing in Fragile X Syndrome

Carlos Portera-Cailliau
UCLA
Jun 23, 2020

To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we have adopted a symptom-to-circuit approach in theFmr1-/- mouse model of Fragile X syndrome (FXS). Using a go/no-go task and in vivo 2-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons in primary visual cortex, and a decrease in the activity of parvalbumin (PV) interneurons. Restoring visually evoked activity in PV cells in Fmr1-/- mice with a chemogenetic (DREADD) strategy was sufficient to rescue their behavioural performance. Strikingly, human subjects with FXS exhibit similar impairments in visual discrimination as Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in FXS. More recently, we find that the ability of Fmr1-/- mice to perform the visual discrimination task is also drastically impaired in the presence of visual or auditory distractors, suggesting that sensory hypersensitivity may affect perceptual learning in autism.

orientation tuning coverage

4 items

Seminar4
Domain spotlight

Explore how orientation tuning research is advancing inside Neuro.

Visit domain