Latest

SeminarNeuroscience

Demystifying the richness of visual perception

Ruth Rosenholtz
MIT
Oct 20, 2021

Human vision is full of puzzles. Observers can grasp the essence of a scene in an instant, yet when probed for details they are at a loss. People have trouble finding their keys, yet they may be quite visible once found. How does one explain this combination of marvelous successes with quirky failures? I will describe our attempts to develop a unifying theory that brings a satisfying order to multiple phenomena. One key is to understand peripheral vision. A visual system cannot process everything with full fidelity, and therefore must lose some information. Peripheral vision must condense a mass of information into a succinct representation that nonetheless carries the information needed for vision at a glance. We have proposed that the visual system deals with limited capacity in part by representing its input in terms of a rich set of local image statistics, where the local regions grow — and the representation becomes less precise — with distance from fixation. This scheme trades off computation of sophisticated image features at the expense of spatial localization of those features. What are the implications of such an encoding scheme? Critical to our understanding has been the use of methodologies for visualizing the equivalence classes of the model. These visualizations allow one to quickly see that many of the puzzles of human vision may arise from a single encoding mechanism. They have suggested new experiments and predicted unexpected phenomena. Furthermore, visualization of the equivalence classes has facilitated the generation of testable model predictions, allowing us to study the effects of this relatively low-level encoding on a wide range of higher-level tasks. Peripheral vision helps explain many of the puzzles of vision, but some remain. By examining the phenomena that cannot be explained by peripheral vision, we gain insight into the nature of additional capacity limits in vision. In particular, I will suggest that decision processes face general-purpose limits on the complexity of the tasks they can perform at a given time.

SeminarNeuroscience

What Art can tell us about the Brain

Margaret Livingstone
Harvard
Oct 5, 2021

Artists have been doing experiments on vision longer than neurobiologists. Some major works of art have provided insights as to how we see; some of these insights are so undamental that they can be understood in terms of the underlying neurobiology. For example, artists have long realized that color and luminance can play independent roles in visual perception. Picasso said, "Colors are only symbols. Reality is to be found in luminance alone." This observation has a parallel in the functional subdivision of our visual systems, where color and luminance are processed by the evolutionarily newer, primate-specific What system, and the older, colorblind, Where (or How) system. Many techniques developed over the centuries by artists can be understood in terms of the parallel organization of our visual systems. I will explore how the segregation of color and luminance processing are the basis for why some Impressionist paintings seem to shimmer, why some op art paintings seem to move, some principles of Matisse's use of color, and how the Impressionists painted "air". Central and peripheral vision are distinct, and I will show how the differences in resolution across our visual field make the Mona Lisa's smile elusive, and produce a dynamic illusion in Pointillist paintings, Chuck Close paintings, and photomosaics. I will explore how artists have figured out important features about how our brains extract relevant information about faces and objects, and I will discuss why learning disabilities may be associated with artistic talent.

peripheral vision coverage

3 items

Seminar3
Domain spotlight

Explore how peripheral vision research is advancing inside Neuro.

Visit domain