PFC
Latest
Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation
Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.
The medial prefrontal cortex replays generalized sequences
Whilst spatial navigation is a function ascribed to the hippocampus, flexibly adapting to a change in rule depends on the medial prefrontal cortex (mPFC). Single-units were recorded from the hippocampus and mPFC of rats shifting between a spatially- and cue-guided rule on a plus-maze. The mPFC population coded for the relative position between start and goal arm. During awake immobility periods, the mPFC replayed organized sequences of generalized positions which positively correlated with rule-switching performance. Conversely, hippocampal replay negatively correlated with performance and occurred independently of mPFC replay. Sequential replay in the hippocampus and mPFC may thus serve different functions.
Prefrontal top-down projections control context-dependent strategy selection
The rules governing behavior often vary with behavioral contexts. As a result, an action rewarded in one context may be discouraged in another. Animals and humans are capable of switching between behavioral strategies under different contexts and acting adaptively according to the variable rules, a flexibility that is thought to be mediated by the prefrontal cortex (PFC). However, how the PFC orchestrates the context-dependent switch of strategies remains unclear. Here we show that pathway-specific projection neurons in the medial PFC (mPFC) differentially contribute to context-instructed strategy selection. In mice trained in a decision-making task in which a previously established rule and a newly learned rule are associated with distinct contexts, the activity of mPFC neurons projecting to the dorsomedial striatum (mPFC-DMS) encodes the contexts and further represents decision strategies conforming to the old and new rules. Moreover, mPFC-DMS neuron activity is required for the context-instructed strategy selection. In contrast, the activity of mPFC neurons projecting to the ventral midline thalamus (mPFC-VMT) does not discriminate between the contexts, and represents the old rule even if mice have adopted the new one. Furthermore, these neurons act to prevent the strategy switch under the new rule. Our results suggest that mPFC-DMS neurons promote flexible strategy selection guided by contexts, whereas mPFC-VMT neurons favor fixed strategy selection by preserving old rules.
Flexible selection of task-relevant features through population gating
Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is believed to rely on a progressive selection of task-relevant stimuli across the cortical hierarchy, but the specific across-area interactions enabling stimulus selection are still unclear. Here, we propose that population gating, occurring within A1 but controlled by top-down inputs from mPFC, can support across-area stimulus selection. Examining single-unit activity recorded while rats performed an auditory context-dependent task, we found that A1 encoded relevant and irrelevant stimuli along a common dimension of its neural space. Yet, the relevant stimulus encoding was enhanced along an extra dimension. In turn, mPFC encoded only the stimulus relevant to the ongoing context. To identify candidate mechanisms for stimulus selection within A1, we reverse-engineered low-rank RNNs trained on a similar task. Our analyses predicted that two context-modulated neural populations gated their preferred stimulus in opposite contexts, which we confirmed in further analyses of A1. Finally, we show in a two-region RNN how population gating within A1 could be controlled by top-down inputs from PFC, enabling flexible across-area communication despite fixed inter-areal connectivity.
Optimal information loading into working memory in prefrontal cortex
Working memory involves the short-term maintenance of information and is critical in many tasks. The neural circuit dynamics underlying working memory remain poorly understood, with different aspects of prefrontal cortical (PFC) responses explained by different putative mechanisms. By mathematical analysis, numerical simulations, and using recordings from monkey PFC, we investigate a critical but hitherto ignored aspect of working memory dynamics: information loading. We find that, contrary to common assumptions, optimal information loading involves inputs that are largely orthogonal, rather than similar, to the persistent activities observed during memory maintenance. Using a novel, theoretically principled metric, we show that PFC exhibits the hallmarks of optimal information loading and we find that such dynamics emerge naturally as a dynamical strategy in task-optimized recurrent neural networks. Our theory unifies previous, seemingly conflicting theories of memory maintenance based on attractor or purely sequential dynamics, and reveals a normative principle underlying the widely observed phenomenon of dynamic coding in PFC.
Dissecting the neural circuits underlying prefrontal regulation of reward and threat responsivity in a primate
Gaining insight into the overlapping neural circuits that regulate positive and negative emotion is an important step towards understanding the heterogeneity in the aetiology of anxiety and depression and developing new treatment targets. Determining the core contributions of the functionally heterogenous prefrontal cortex to these circuits is especially illuminating given its marked dysregulation in affective disorders. This presentation will review a series of studies in a new world monkey, the common marmoset, employing pathway-specific chemogenetics, neuroimaging, neuropharmacology and behavioural and cardiovascular analysis to dissect out prefrontal involvement in the regulation of both positive and negative emotion. Highlights will include the profound shift of sensitivity away from reward and towards threat induced by localised activations within distinct regions of vmPFC, namely areas 25 and 14 as well as the opposing contributions of this region, compared to orbitofrontal and dorsolateral prefrontal cortex, in the overall responsivity to threat. Ongoing follow-up studies are identifying the distinct downstream pathways that mediate some of these effects as well as their differential sensitivity to rapidly acting anti-depressants.
From single cell to population coding during defensive behaviors in prefrontal circuits
Coping with threatening situations requires both identifying stimuli predicting danger and selecting adaptive behavioral responses in order to survive. The dorso medial prefrontal cortex (dmPFC) is a critical structure involved in the regulation of threat-related behaviour, yet it is still largely unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks in order to successfully drive adaptive responses. Over the past years, we used a combination we used a combination of extracellular recordings, neuronal decoding approaches, and state of the art optogenetic manipulations to identify key neuronal elements and mechanisms controlling defensive fear responses. I will present an overview of our recent work ranging from analyses of dedicated neuronal types and oscillatory and synchronization mechanisms to artificial intelligence approaches used to decode the activity or large population of neurons. Ultimately these analyses allowed the identification of high dimensional representations of defensive behavior unfolding within prefrontal networks.
Interpersonal synchrony of body/brain, Solo & Team Flow
Flow is defined as an altered state of consciousness with excessive attention and enormous sense of pleasure, when engaged in a challenging task, first postulated by a psychologist, the late M. Csikszentmihayli. The main focus of this talk will be “Team Flow,” but there were two lines of previous studies in our laboratory as its background. First is inter-body and inter-brain coordination/synchrony between individuals. Considering various rhythmic echoing/synchronization phenomena in animal behavior, it could be regarded as the biological, sub-symbolic and implicit origin of social interactions. The second line of precursor research is on the state of Solo Flow in game playing. We employed attenuation of AEP (Auditory Evoked Potential) to task-irrelevant sound probes as an objective-neural indicator of such a Flow status, and found that; 1) Mutual link between the ACC & the TP is critical, and 2) overall, top-down influence is enhanced while bottom-up causality is attenuated. Having these as the background, I will present our latest study of Team Flow in game playing. We found that; 3) the neural correlates of Team Flow is distinctively different from those of Solo Flow nor of non-flow social, 4) the left medial temporal cortex seems to form an integrative node for Team Flow, receiving input related to Solo Flow state from the right PFC and input related to social state from the right IFC, and 5) Intra-brain (dis)similarity of brain activity well predicts (dis)similarity of skills/cognition as well as affinity for inter-brain coherence.
Frontal circuit specialisations for information search and decision making
During primate evolution, prefrontal cortex (PFC) expanded substantially relative to other cortical areas. The expansion of PFC circuits likely supported the increased cognitive abilities of humans and anthropoids to sample information about their environment, evaluate that information, plan, and decide between different courses of action. What quantities do these circuits compute as information is being sampled towards and a decision is being made? And how can they be related to anatomical specialisations within and across PFC? To address this, we recorded PFC activity during value-based decision making using single unit recording in non-human primates and magnetoencephalography in humans. At a macrocircuit level, we found that value correlates differ substantially across PFC subregions. They are heavily shaped by each subregion’s anatomical connections and by the decision-maker’s current locus of attention. At a microcircuit level, we found that the temporal evolution of value correlates can be predicted using cortical recurrent network models that temporally integrate incoming decision evidence. These models reflect the fact that PFC circuits are highly recurrent in nature and have synaptic properties that support persistent activity across temporally extended cognitive tasks. Our findings build upon recent work describing economic decision making as a process of attention-weighted evidence integration across time.
A Network for Computing Value Equilibrium in the Human Medial Prefrontal Corte
Humans and other animals make decisions in order to satisfy their goals. However, it remains unknown how neural circuits compute which of multiple possible goals should be pursued (e.g., when balancing hunger and thirst) and how to combine these signals with estimates of available reward alternatives. Here, humans undergoing fMRI accumulated two distinct assets over a sequence of trials. Financial outcomes depended on the minimum cumulate of either asset, creating a need to maintain “value equilibrium” by redressing any imbalance among the assets. Blood-oxygen-level-dependent (BOLD) signals in the rostral anterior cingulate cortex (rACC) tracked the level of imbalance among goals, whereas the ventromedial prefrontal cortex (vmPFC) signaled the level of redress incurred by a choice rather than the overall amount received. These results suggest that a network of medial frontal brain regions compute a value signal that maintains value equilibrium among internal goals.
NMC4 Short Talk: Two-Photon Imaging of Norepinephrine in the Prefrontal Cortex Shows that Norepinephrine Structures Cell Firing Through Local Release
Norepinephrine (NE) is a neuromodulator that is released from projections of the locus coeruleus via extra-synaptic vesicle exocytosis. Tonic fluctuations in NE are involved in brain states, such as sleep, arousal, and attention. Previously, NE in the PFC was thought to be a homogenous field created by bulk release, but it remains unknown whether phasic (fast, short-term) fluctuations in NE can produce a spatially heterogeneous field, which could then structure cell firing at a fine spatial scale. To understand how spatiotemporal dynamics of norepinephrine (NE) release in the prefrontal cortex affect neuronal firing, we performed a novel in-vivo two-photon imaging experiment in layer ⅔ of the prefrontal cortex using a green fluorescent NE sensor and a red fluorescent Ca2+ sensor, which allowed us to simultaneously observe fine-scale neuronal and NE dynamics in the form of spatially localized fluorescence time series. Using generalized linear modeling, we found that the local NE field differs from the global NE field in transient periods of decorrelation, which are influenced by proximal NE release events. We used optical flow and pattern analysis to show that release and reuptake events can occur at the same location but at different times, and differential recruitment of release and reuptake sites over time is a potential mechanism for creating a heterogeneous NE field. Our generalized linear models predicting cellular dynamics show that the heterogeneous local NE field, and not the global field, drives cell firing dynamics. These results point to the importance of local, small-scale, phasic NE fluctuations for structuring cell firing. Prior research suggests that these phasic NE fluctuations in the PFC may play a role in attentional shifts, orienting to sensory stimuli in the environment, and in the selective gain of priority representations during stress (Mather, Clewett et al. 2016) (Aston-Jones and Bloom 1981).
NMC4 Short Talk: Different hypotheses on the role of the PFC in solving simple cognitive tasks
Low-dimensional population dynamics can be observed in neural activity recorded from the prefrontal cortex (PFC) of subjects performing simple cognitive tasks. Many studies have shown that recurrent neural networks (RNNs) trained on the same tasks can reproduce qualitatively these state space trajectories, and have used them as models of how neuronal dynamics implement task computations. The PFC is also viewed as a conductor that organizes the communication between cortical areas and provides contextual information. It is then not clear what is its role in solving simple cognitive tasks. Do the low-dimensional trajectories observed in the PFC really correspond to the computations that it performs? Or do they indirectly reflect the computations occurring within the cortical areas projecting to the PFC? To address these questions, we modelled cortical areas with a modular RNN and equipped it with a PFC-like cognitive system. When trained on cognitive tasks, this multi-system brain model can reproduce the low-dimensional population responses observed in neuronal activity as well as classical RNNs. Qualitatively different mechanisms can emerge from the training process when varying some details of the architecture such as the time constants. In particular, there is one class of models where it is the dynamics of the cognitive system that is implementing the task computations, and another where the cognitive system is only necessary to provide contextual information about the task rule as task performance is not impaired when preventing the system from accessing the task inputs. These constitute two different hypotheses about the causal role of the PFC in solving simple cognitive tasks, which could motivate further experiments on the brain.
The role of the primate prefrontal cortex in inferring the state of the world and predicting change
In an ever-changing environment, uncertainty is omnipresent. To deal with this, organisms have evolved mechanisms that allow them to take advantage of environmental regularities in order to make decisions robustly and adjust their behavior efficiently, thus maximizing their chances of survival. In this talk, I will present behavioral evidence that animals perform model-based state inference to predict environmental state changes and adjust their behavior rapidly, rather than slowly updating choice values. This model-based inference process can be described using Bayesian change-point models. Furthermore, I will show that neural populations in the prefrontal cortex accurately predict behavioral switches, and that the activity of these populations is associated with Bayesian estimates. In addition, we will see that learning leads to the emergence of a high-dimensional representational subspace that can be reused when the animals re-learn a previously learned set of action-value associations. Altogether, these findings highlight the role of the PFC in representing a belief about the current state of the world.
Dynamical population coding during defensive behaviours in prefrontal circuits
Coping with threatening situations requires both identifying stimuli predicting danger and selecting adaptive behavioral responses in order to survive. The dorso medial prefrontal cortex (dmPFC) is a critical structure involved in the regulation of threat-related behaviour, yet it is still largely unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks in order to successfully drive adaptive responses. To address these questions, we used a combination of extracellular recordings, neuronal decoding approaches, and optogenetic manipulations to show that threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. These data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations and discriminates threat- from non-threat cues, it does not predict action outcome. In contrast, transient dmPFC population activity prior to action initiation reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity critically constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of active fear responses relies on a dynamic process of information linking threats with defensive actions unfolding within prefrontal networks.
Towards a neurally mechanistic understanding of visual cognition
I am interested in developing a neurally mechanistic understanding of how primate brains represent the world through its visual system and how such representations enable a remarkable set of intelligent behaviors. In this talk, I will primarily highlight aspects of my current research that focuses on dissecting the brain circuits that support core object recognition behavior (primates’ ability to categorize objects within hundreds of milliseconds) in non-human primates. On the one hand, my work empirically examines how well computational models of the primate ventral visual pathways embed knowledge of the visual brain function (e.g., Bashivan*, Kar*, DiCarlo, Science, 2019). On the other hand, my work has led to various functional and architectural insights that help improve such brain models. For instance, we have exposed the necessity of recurrent computations in primate core object recognition (Kar et al., Nature Neuroscience, 2019), one that is strikingly missing from most feedforward artificial neural network models. Specifically, we have observed that the primate ventral stream requires fast recurrent processing via ventrolateral PFC for robust core object recognition (Kar and DiCarlo, Neuron, 2021). In addition, I have been currently developing various chemogenetic strategies to causally target specific bidirectional neural circuits in the macaque brain during multiple object recognition tasks to further probe their relevance during this behavior. I plan to transform these data and insights into tangible progress in neuroscience via my collaboration with various computational groups and building improved brain models of object recognition. I hope to end the talk with a brief glimpse of some of my planned future work!
Frontal circuit specialisations for decision making
During primate evolution, prefrontal cortex (PFC) expanded substantially relative to other cortical areas. The expansion of PFC circuits likely supported the increased cognitive abilities of humans and anthropoids to plan, evaluate, and decide between different courses of action. But what do these circuits compute as a decision is being made, and how can they be related to anatomical specialisations within and across PFC? To address this, we recorded PFC activity during value-based decision making using single unit recording in non-human primates and magnetoencephalography in humans. At a macrocircuit level, we found that value correlates differ substantially across PFC subregions. They are heavily shaped by each subregion’s anatomical connections and by the decision-maker’s current locus of attention. At a microcircuit level, we found that the temporal evolution of value correlates can be predicted using cortical recurrent network models that temporally integrate incoming decision evidence. These models reflect the fact that PFC circuits are highly recurrent in nature and have synaptic properties that support persistent activity across temporally extended cognitive tasks. Our findings build upon recent work describing economic decision making as a process of attention-weighted evidence integration across time.
The neuroscience of color and what makes primates special
Among mammals, excellent color vision has evolved only in certain non-human primates. And yet, color is often assumed to be just a low-level stimulus feature with a modest role in encoding and recognizing objects. The rationale for this dogma is compelling: object recognition is excellent in grayscale images (consider black-and-white movies, where faces, places, objects, and story are readily apparent). In my talk I will discuss experiments in which we used color as a tool to uncover an organizational plan in inferior temporal cortex (parallel, multistage processing for places, faces, colors, and objects) and a visual-stimulus functional representation in prefrontal cortex (PFC). The discovery of an extensive network of color-biased domains within IT and PFC, regions implicated in high-level object vision and executive functions, compels a re-evaluation of the role of color in behavior. I will discuss behavioral studies prompted by the neurobiology that uncover a universal principle for color categorization across languages, the first systematic study of the color statistics of objects and a chromatic mechanism by which the brain may compute animacy, and a surprising paradoxical impact of memory on face color. Taken together, my talk will put forward the argument that color is not primarily for object recognition, but rather for the assessment of the likely behavioral relevance, or meaning, of the stuff we see.
Dynamical population coding during defensive behaviours in prefrontal circuits
Coping with threatening situations requires both identifying stimuli predicting danger and selecting adaptive behavioral responses in order to survive. The dorso medial prefrontal cortex (dmPFC) is a critical structure involved in the regulation of threat-related behaviour, yet it is still largely unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks in order to successfully drive adaptive responses. To address these questions, we used a combination of extracellular recordings, neuronal decoding approaches, and optogenetic manipulations to show that threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. These data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations and discriminates threat- from non-threat cues, it does not predict action outcome. In contrast, transient dmPFC population activity prior to action initiation reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity critically constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of active fear responses relies on a dynamic process of information linking threats with defensive actions unfolding within prefrontal networks.
Dimensions of variability in circuit models of cortex
Cortical circuits receive multiple inputs from upstream populations with non-overlapping stimulus tuning preferences. Both the feedforward and recurrent architectures of the receiving cortical layer will reflect this diverse input tuning. We study how population-wide neuronal variability propagates through a hierarchical cortical network receiving multiple, independent, tuned inputs. We present new analysis of in vivo neural data from the primate visual system showing that the number of latent variables (dimension) needed to describe population shared variability is smaller in V4 populations compared to those of its downstream visual area PFC. We successfully reproduce this dimensionality expansion from our V4 to PFC neural data using a multi-layer spiking network with structured, feedforward projections and recurrent assemblies of multiple, tuned neuron populations. We show that tuning-structured connectivity generates attractor dynamics within the recurrent PFC current, where attractor competition is reflected in the high dimensional shared variability across the population. Indeed, restricting the dimensionality analysis to activity from one attractor state recovers the low-dimensional structure inherited from each of our tuned inputs. Our model thus introduces a framework where high-dimensional cortical variability is understood as ``time-sharing’’ between distinct low-dimensional, tuning-specific circuit dynamics.
Unique Molecular Regulation of Prefrontal Cortex Confers Vulnerability to Cognitive Disorders
The Arnsten lab studies molecular influences on the higher cognitive circuits of the dorsolateral prefrontal cortex (dlPFC), in order to understand mechanisms affecting working memory at the cellular and behavioral levels, with the overarching aim of identifying the actions that render the dlPFC so vulnerable in cognitive disorders. Her lab has shown that the dlPFC has unique neurotransmission and neuromodulation compared to the classic actions found in the primary visual cortex, including mechanisms to rapidly weaken PFC connections during uncontrollable stress. Reduced regulation of these stress pathways due to genetic or environmental insults contributes to dlPFC dysfunction in cognitive disorders, including calcium dysregulation and tau phosphorylation in the aging association cortex. Understanding these unique mechanisms has led to the development of a new treatment, IntunivTM, for a variety of PFC disorders.
Neural coding in the auditory cortex - "Emergent Scientists Seminar Series
Dr Jennifer Lawlor Title: Tracking changes in complex auditory scenes along the cortical pathway Complex acoustic environments, such as a busy street, are characterised by their everchanging dynamics. Despite their complexity, listeners can readily tease apart relevant changes from irrelevant variations. This requires continuously tracking the appropriate sensory evidence while discarding noisy acoustic variations. Despite the apparent simplicity of this perceptual phenomenon, the neural basis of the extraction of relevant information in complex continuous streams for goal-directed behavior is currently not well understood. As a minimalistic model for change detection in complex auditory environments, we designed broad-range tone clouds whose first-order statistics change at a random time. Subjects (humans or ferrets) were trained to detect these changes.They were faced with the dual-task of estimating the baseline statistics and detecting a potential change in those statistics at any moment. To characterize the extraction and encoding of relevant sensory information along the cortical hierarchy, we first recorded the brain electrical activity of human subjects engaged in this task using electroencephalography. Human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. To further this investigation, we performed a series of electrophysiological recordings in the primary auditory cortex (A1), secondary auditory cortex (PEG) and frontal cortex (FC) of the fully trained behaving ferret. A1 neurons exhibited strong onset responses and change-related discharges specific to neuronal tuning. PEG population showed reduced onset-related responses, but more categorical change-related modulations. Finally, a subset of FC neurons (dlPFC/premotor) presented a generalized response to all change-related events only during behavior. We show using a Generalized Linear Model (GLM) that the same subpopulation in FC encodes sensory and decision signals, suggesting that FC neurons could operate conversion of sensory evidence to perceptual decision. All together, these area-specific responses suggest a behavior-dependent mechanism of sensory extraction and generalization of task-relevant event. Aleksandar Ivanov Title: How does the auditory system adapt to different environments: A song of echoes and adaptation
Inter-areal patterned microstimulation selectively drives PFC activity and behavior in a memory task
COSYNE 2022
Inter-areal patterned microstimulation selectively drives PFC activity and behavior in a memory task
COSYNE 2022
Linking neural dynamics across macaque V4, IT, and PFC to trial-by-trial object recognition behavior
COSYNE 2022
Linking neural dynamics across macaque V4, IT, and PFC to trial-by-trial object recognition behavior
COSYNE 2022
Neurons in dlPFC signal unsigned reward prediction error independently from value
COSYNE 2022
Neurons in dlPFC signal unsigned reward prediction error independently from value
COSYNE 2022
Robustness of PFC networks under inter and intra-hemispheric patterned microstimulation perturbations
COSYNE 2023
Bidirectional control of BLA-DMS and PFC-DMS projections on innate avoidance behaviour in mice
FENS Forum 2024
Causal role of PFC-M1 coordination during sleep in long-term motor memory consolidation
FENS Forum 2024
Cerebellar neuronal activity during emotional control and the role of cerebellar-mPFC pathway in fear learning
FENS Forum 2024
The circadian molecular clock in mPFC modulates the depressive phenotype and represents a potential treatment pathway
FENS Forum 2024
Early postnatal NMDA receptor ablation differentially impacts on transcallosal and long-range mPFC inputs
FENS Forum 2024
The evaluation of PFCs (PFOA or PFHpA) on neural activity and survival in cortical neurons
FENS Forum 2024
The role of local and long-range mPFC connections in the consolidation of memories
FENS Forum 2024
Long-term consequences of cannabinoid receptor activation during adolescence on PFC network activity and cognitive functions
FENS Forum 2024
mGluR5-mediated deactivation of mPFC via somatostatin-positive interneuron in neuropathic pain mice
FENS Forum 2024
Plasticity-related alterations in the mPFC of a dual-hit model of schizophrenia in rat
FENS Forum 2024
The role of the mPFC pyramidal neurons in mediating social choice
FENS Forum 2024
Shedding light on object location recall: Optogenetic priming of the HIP-mPFC pathway for object-location memory
FENS Forum 2024
Stability of task representations in mouse mPFC across different behaviors
FENS Forum 2024
Synergistic, long-term effects of glutamate dehydrogenase 1 deficiency and mild stress on cognitive function and mPFC gene and miRNA expression
FENS Forum 2024
PFC coverage
42 items