Phd
phd
Latest
Prof. Jean-Pascal Pfister
The project aims at answering an almost 100 year old question in Neuroscience: “What are spikes good for?”. Indeed, since the discovery of action potentials by Lord Adrian in 1926, it has remained largely unknown what the benefits of spiking neurons are, when compared to analog neurons. Traditionally, it has been argued that spikes are good for long-distance communication or for temporally precise computation. However, there is no systematic study that quantitatively compares the communication as well as the computational benefits of spiking neuron w.r.t analog neurons. The aim of the project is to systematically quantify the benefits of spiking at various levels. The PhD students and post-doc will be supervised by Prof. Jean-Pascal Pfister (Theoretical Neuroscience Group, Department of Physiology, University of Bern).
Fabrice Wallois
The main objective of this project is to characterize the endogenous generators underlying the emergence of sensory capacities and to characterize their associated functional connectivity. This will be done retrospectively on our High Resolution EEG database in premature neonates from 24 weeks of gestational age, which is the largest database worldwide. We will also use the OPM pediatric MEG, which is being set up in Amiens. This study will allow us to characterize the establishment of sensory networks before the modulation of cortical activity by external sensory information. The PhD candidate will be concentrated on developing advance signal processing approached using the already available datasets on HR EEG and MEG, for characterization of spontaneous neural oscillations and analysis of functional connectivity.
N/A
New York University is seeking exceptional PhD candidates with strong quantitative training (e.g., physics, mathematics, engineering) coupled with a clear interest in scientific study of the brain. Doctoral programs are flexible, allowing students to pursue research across departmental boundaries. Admissions are handled separately by each department, and students interested in pursuing graduate studies should submit an application to the program that best fits their goals and interests.
N/A
New York University is seeking exceptional PhD candidates with strong quantitative training (e.g., physics, mathematics, engineering) coupled with a clear interest in scientific study of the brain. Doctoral programs are flexible, allowing students to pursue research across departmental boundaries. Admissions are handled separately by each department, and students interested in pursuing graduate studies should submit an application to the program that best fits their goals and interests.
Professor Geoffrey J Goodhill
The Department of Neuroscience at Washington University School of Medicine is currently recruiting investigators with the passion to create knowledge, pursue bold visions, and challenge canonical thinking as we expand into our new 600,000 sq ft purpose-built neurosciences research building. We are now seeking a tenure-track investigator at the level of Assistant Professor to develop an innovative research program in Theoretical/Computational Neuroscience. The successful candidates will join a thriving theoretical/computational neuroscience community at Washington University, including the new Center for Theoretical and Computational Neuroscience. In addition, the Department also has world-class research strengths in systems, circuits and behavior, cellular and molecular neuroscience using a variety of animal models including worms, flies, zebrafish, rodents and non-human primates. We are particularly interested in outstanding researchers who are both creative and collaborative.
Peter C. Petersen
The project addresses the generation and functions of theta oscillations in spatial navigation using systems neuroscience and population-level approaches. The project involves performing electrophysiological recordings from freely moving animals using chronically implanted high-density Neuropixels silicon probes and applying optogenetics for single-cell tagging, and behavioral manipulations.
Federico Stella
The project will focus on the computational investigation of the role of neural reactivations in memory. Since their discovery neural reactivations happening during sleep have emerged as an exceptional tool to investigate the process of memory formation in the brain. This phenomenon has been mostly associated with the hippocampus, an area known for its role in the processing of new memories and their initial storage. Continuous advancements in data acquisition techniques are giving us an unprecedented access to the activity of large-scale networks during sleep, in the hippocampus and in other cortical regions. At the same time, our theoretical understanding of the computations underlying neural reactivations and more in general memory representations, has only began to take shape. Combining mathematical modeling of neural networks and analysis of existing dataset, we will address some key aspects of this phenomenon such as: 1) The role of different sleep phases in regulating the reactivation process and in modulating the evolution of a memory trace. 2) The relationship of hippocampal reactivations to the process of (semantic) learning and knowledge generalization. 3) The relevance of reactivation statistical properties for learning in cortico-hippocampal networks.
Jean-Pascal Pfister
The Theoretical Neuroscience Group of the University of Bern is seeking applications for a PhD position, funded by a Swiss National Science Foundation grant titled “Why Spikes?”. This project aims at answering a nearly century-old question in Neuroscience: “What are spikes good for?”. Indeed, since the discovery of action potentials by Lord Adrian in 1926, it has remained largely unknown what the benefits of spiking neurons are, when compared to analog neurons. Traditionally, it has been argued that spikes are good for long-distance communication or for temporally precise computation. However, there is no systematic study that quantitatively compares the communication as well as the computational benefits of spiking neuron w.r.t analog neurons. The aim of the project is to systematically quantify the benefits of spiking at various levels by developing and analyzing appropriate mathematical models. The PhD student will be supervised by Prof. Jean-Pascal Pfister (Theoretical Neuroscience Group, Department of Physiology, University of Bern). The project will involve close collaborations within a highly motivated team as well as regular exchange of ideas with the other theory groups at the institute.
Lorenzo Fontolan
We are pleased to announce the opening of a PhD position at INMED (Aix-Marseille University) through the SCHADOC program, focused on the neural coding of social interactions and memory in the cortex of behaving mice. The project will investigate how social behaviors essential for cooperation, mating, and group dynamics are encoded in the brain, and how these processes are disrupted in neurodevelopmental disorders such as autism. This project uses longitudinal calcium imaging and population-level data analysis to study how cortical circuits encode social interactions in mice. Recordings from mPFC and S1 in wild-type and Neurod2 KO mice will be used to extract neural representations of social memory. The candidate will develop and apply computational models of neural dynamics and representational geometry to uncover how these codes evolve over time and are disrupted in social amnesia.
Anna Montagnini
A fully funded 3-years PhD position (EU MSCA-COFUND program) is available at Aix-Marseille University (France) for motivated students interested in the behavioral, neurophysiological and computational investigation of multistable visual perception in healthy and pathological populations. The project is strongly cross-disciplinary, including psychophysical and oculomotor experiments as well as advanced computational modeling. It will also involve an international mobility at the University of Edinburgh (UK), as well as a collaboration with the psychiatry department of Lille Hospital (France).
Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care; Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders
In March we will focus on TMS and host Ghazaleh Soleimani and Colleen Hanlon. The talks will talk place on Thursday, March 28th at noon ET – please be aware that this means 5PM CET since Boston already switched to summer time! Ghazaleh Soleimani, PhD, is a postdoctoral fellow in Dr Hamed Ekhtiari’s lab at the University of Minnesota. She is also the executive director of the International Network of tES/TMS for Addiction Medicine (INTAM). She will discuss “Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders”. Colleen Hanlon, PhD, currently serves as a Vice President of Medical Affairs for BrainsWay, a company specializing in medical devices for mental health, including TMS. Colleen previously worked at the Medical University of South Carolina and Wake Forest School of Medicine. She received the International Brain Stimulation Early Career Award in 2023. She will discuss “Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!
Trends in NeuroAI - Unified Scalable Neural Decoding (POYO)
Lead author Mehdi Azabou will present on his work "POYO-1: A Unified, Scalable Framework for Neural Population Decoding" (https://poyo-brain.github.io/). Mehdi is an ML PhD student at Georgia Tech advised by Dr. Eva Dyer. Paper link: https://arxiv.org/abs/2310.16046 Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri | https://groups.google.com/g/medarc-fmri).
Imaging the subcortex; Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders
We are very much looking forward to host Francisca Ferreira and Birte Forstmann on December 14th, 2023, at noon ET / 6PM CET. Francisca Ferreira is a PhD student and Neurosurgery trainee at the University College of London Queen Square Institute of Neurology and a Royal College of Surgeons “Emerging Leaders” program laureate. Her presentation title will be: “Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders”. Birte Forstmann, PhD, is the Director of the Amsterdam Brain and Cognition Center, a Professor of Cognitive Neuroscience at the University of Amsterdam, and a Professor by Special Appointment of Neuroscientific Testing of Psychological Models at the University of Leiden. Besides her scientific presentation (“Imaging the human subcortex”), she will give us a glimpse at the “Person behind the science”. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
From primate anatomy to human neuroimaging: insights into the circuits underlying psychiatric disease and neuromodulation; Large-scale imaging of neural circuits: towards a microscopic human connectome
On Thursday, October 26th, we will host Anastasia Yendiki and Suzanne Haber. Anastasia Yendiki, PhD, is an Associate Professor in Radiology at the Harvard Medical School and an Associate Investigator at the Massachusetts General Hospital and Athinoula A. Martinos Center. Suzanne Haber, PhD, is a Professor at the University of Rochester and runs a lab at McLean hospital at Harvard Medical School in Boston. She has received numerous awards for her work on neuroanatomy. Beside her scientific presentation, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Quality of life after DBS; Non-motor effects of DBS and quality of life
It’s our pleasure to announce that we will host Haidar Dafsari and Günther Deuschl on September 28th at noon ET / 6PM CET. Haidar Dafsari, MD, is a researcher and lecturer at the University Hospital Cologne. Günther Deuschl, MD, PhD, is a professor at Kiel University. He was president of the International Movement Disorders Society (MDS) from 2011-2013, Editor in Chief of the journal Movement Disorders and has been awarded numerous high-class awards. Beside his scientific presentation, he will give us a glimpse at the “Person behind the science”.The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease
On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Alternative careers for neuroscience PhDs
Auditory input to the basal ganglia; Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control
On Thursday, May 25th we will host Darcy Diesburg and Mark Richardson. Darcy Diesburg, PhD, is a post-doctoral research fellow at Brown University. She will tell us about “Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control”. Mark Richardson, MD, PhD, is the Director of Functional Neurosurgery at the Massachusetts General Hospital, Charles Pappas Associate Professor of Neurosciences at Harvard Medical School and Visiting Associate Professor of Brain and Cognitive Sciences at MIT. Beside his scientific presentation on “Auditory input to the basal ganglia”, he will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
My evolution in invasive human neurophysiology: From basal ganglia single units to chronic electrocorticography; Therapies orchestrated by patients' own rhythms
On Thursday, April 27th, we will host Hayriye Cagnan and Philip A. Starr. Hayriye Cagnan, PhD, is an associate professor at the MRC Brain Network Dynamics Unit and University of Oxford. She will tell us about “Therapies orchestrated by patients’ own rhythms”. Philip A. Starr, MD, PhD, is a neurosurgeon and professor of Neurological Surgery at the University of California San Francisco. Besides his scientific presentation on “My evolution in invasive human neurophysiology: from basal ganglia single units to chronic electrocorticography”, he will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Causal Symptom Network Mapping Based on Lesions and Brain Stimulation; Converging Evidence about a Depression Circuit Using Causal Sources of Information
It’s our pleasure to announce that we will host Shan Siddiqi and Michael D. Fox on Thursday, March 30th at noon ET / 6PM CET. Shan Siddiqi, MD, is an Assistant Professor of Psychiatry at Harvard Medical School and the director of Psychiatric Neuromodulation Research at the Brigham and Women’s Hospital. Michael D. Fox, MD, PhD, is an Associate Professor of Neurology at Harvard Medical School and the founding director of the Center for Brain Circuit Therapeutics at the Brigham and Women’s Hospital. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
25 years of DBS beyond movement disorders: what challenges are we facing?; Directional DBS targeting of different nuclei in the thalamus for the treatment of pain
On Thursday, 23rd of February, we will host Veerle Visser-Vandewalle and Marie Krüger. Marie Krüger, MD, is is currently leading the stereotactic surgery unit in St. Gallen but is on her move to join the team at UCL / Queensquare London. She will discuss “Directional DBS targeting of different nuclei in the thalamus for the treatment of pain”. Veerle Visser-Vandewalle, MD, PhD, is the Head of the Department of Stereotactic and Functional Neurosurgery at University Hospital of Cologne. Beside his scientific presentation on “25 years of DBS beyond movement disorders: what challenges are we facing?”, she will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being
Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.
Beta oscillations in the basal ganglia: Past, Present and Future; Oscillatory signatures of motor symptoms across movement disorders
On Wednesday, January 25th, at noon ET / 6PM CET, we will host Roxanne Lofredi and Hagai Bergman. Roxanne Lofredi, MD, is a research fellow in the Movement Disorders and Neuromodulation Unit at Charité Universitätsmedizin Berlin. Hagai Bergman, MD, PhD, is a Professor of Physiology in the Edmond and Lily Safra Center for Brain Research and Faculty of Medicine at the Hebrew University of Jerusalem, and is Simone and Bernard Guttman Chair in Brain Research. Beside his scientific presentation on “Beta oscillations in the basal ganglia: Past, Present and Future”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Bridging the gap from research to clinical decision making in epilepsy neuromodulation; How to become an integral part of the functional neurosurgery team as a radiologist
On Wednesday, November 30th, at noon ET / 6PM CET, we will host Alexandre Boutet and Erik H. Middlebrooks. Alexandre Boutet, MD, PhD, is a neuroradiology fellow at the University of Toronto, and will tell us about “How to become an integral part of the functional neurosurgery team as a radiologist”. Erik H. Middlebrooks, MD, is a Professor and Consultant of Neuroradiology and Neurosurgery and the Neuroradiology Program Director at Mayo Clinic. Beside his scientific presentation about “Bridging the Gap from Research to Clinical Decision Making in Epilepsy Neuromodulation”, he will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Neurosurgery for Mental Disorders: Challenging Mindsets; Combining Neuroimaging and Neurophysiology in Parkinson’s Disease
On Wednesday, October 26th, at noon ET / 6PM CET, we will host Kara Johnson, PhD, and Ludvic Zrinzo, MD PhD, for the inaugural session of our newly conceived talk series format entitled "Stimulating Brains". Kara A. Johnson, a postdoctoral fellow in Dr. Coralie de Hemptinne’s lab at the University of Florida, will present her work on “Combining imaging and neurophysiology in Parkinson’s disease”. Ludvic Zrinzo, Professor of functional neurosurgery and head of the University College London functional neurosurgery unit, will give us a glimpse at the “Person behind the science”, and give a talk on “Neurosurgery for mental disorders: challenging mindsets”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Targeting alternative splicing of SYNGAP1 using antisense oligonucleotides
The glymphatic system in motor neurone disease
Neurodegenerative diseases are chronic and inexorable conditions characterised by the presence of insoluble aggregates of abnormally ubiquinated and phosphorylated proteins. Recent evidence also suggests that protein misfolding can propagate throughout the body in a prion-like fashion via the interstitial or cerebrospinal fluids (CSF). As protein aggregation occurs well before the onset of brain damage and symptoms, new biomarkers sensitive to early pathology, together with therapeutic strategies that include eliminating seed proteins and blocking cell-to-cell spread, are of vital importance. The glymphatic system, which facilitates the continuous exchange of CSF and interstitial fluid to clear the brain of waste, presents as a potential biomarker of disease severity, therapeutic target, and drug delivery system. In this webinar, Associate Professor David Wright from the Department of Neuroscience, Monash University, will outline recent advances in using MRI to investigate the glymphatic system. He will also present some of his lab’s recent work investigating glymphatic clearance in preclinical models of motor neurone disease. Associate Professor David Wright is an NHMRC Emerging Leadership Fellow and the Director of Preclinical Imaging in the Department of Neuroscience, Monash University and the Alfred Research Alliance, Alfred Health. His research encompasses the development, application and analysis of advanced magnetic resonance imaging techniques for the study of disease, with a particular emphasis on neurodegenerative disorders. Although less than three years post PhD, he has published over 60 peer-reviewed journal articles in leading neuroscience journals such as Nature Medicine, Brain, and Cerebral Cortex.
The 15th David Smith Lecture in Anatomical Neuropharmacology: Professor Tim Bliss, "Memories of long term potentiation
The David Smith Lectures in Anatomical Neuropharmacology, Part of the 'Pharmacology, Anatomical Neuropharmacology and Drug Discovery Seminars Series', Department of Pharmacology, University of Oxford. The 15th David Smith Award Lecture in Anatomical Neuropharmacology will be delivered by Professor Tim Bliss, Visiting Professor at UCL and the Frontier Institutes of Science and Technology, Xi’an Jiaotong University, China, and is hosted by Professor Nigel Emptage. This award lecture was set up to celebrate the vision of Professor A David Smith, namely, that explanations of the action of drugs on the brain requires the definition of neuronal circuits, the location and interactions of molecules. Tim Bliss gained his PhD at McGill University in Canada. He joined the MRC National Institute for Medical Research in Mill Hill, London in 1967, where he remained throughout his career. His work with Terje Lømo in the late 1960’s established the phenomenon of long-term potentiation (LTP) as the dominant synaptic model of how the mammalian brain stores memories. He was elected as a Fellow of the Royal Society in 1994 and is a founding fellow of the Academy of Medical Sciences. He shared the Bristol Myers Squibb award for Neuroscience with Eric Kandel in 1991, the Ipsen Prize for Neural Plasticity with Richard Morris and Yadin Dudai in 2013. In May 2012 he gave the annual Croonian Lecture at the Royal Society on ‘The Mechanics of Memory’. In 2016 Tim, with Graham Collingridge and Richard Morris shared the Brain Prize, one of the world's most coveted science prizes. Abstract: In 1966 there appeared in Acta Physiologica Scandinavica an abstract of a talk given by Terje Lømo, a PhD student in Per Andersen’s laboratory at the University of Oslo. In it Lømo described the long-lasting potentiation of synaptic responses in the dentate gyrus of the anaesthetised rabbit that followed repeated episodes of 10-20Hz stimulation of the perforant path. Thus, heralded and almost entirely unnoticed, one of the most consequential discoveries of 20th century neuroscience was ushered into the world. Two years later I arrived in Oslo as a visiting post-doc from the National Institute for Medical Research in Mill Hill, London. In this talk I recall the events that led us to embark on a systematic reinvestigation of the phenomenon now known as long-term potentiation (LTP) and will then go on to describe the discoveries and controversies that enlivened the early decades of research into synaptic plasticity in the mammalian brain. I will end with an observer’s view of the current state of research in the field, and what we might expect from it in the future.
Growing a world-class precision medicine industry
Monash Biomedical Imaging is part of the new $71.2 million Australian Precision Medicine Enterprise (APME) facility, which will deliver large-scale development and manufacturing of precision medicines and theranostic radiopharmaceuticals for industry and research. A key feature of the APME project is a high-energy cyclotron with multiple production clean rooms, which will be located on the Monash Biomedical Imaging (MBI) site in Clayton. This strategic co-location will facilitate radiochemistry, PET and SPECT research and clinical use of theranostic (therapeutic and diagnostic) radioisotopes produced on-site. In this webinar, MBI’s Professor Gary Egan and Dr Maggie Aulsebrook will explain how the APME will secure Australia’s supply of critical radiopharmaceuticals, build a globally competitive Australian manufacturing hub, and train scientists and engineers for the Australian workforce. They will cover the APME’s state-of-the-art 30 MeV and 18-24 MeV cyclotrons and radiochemistry facilities, as well as the services that will be accessible to students, scientists, clinical researchers, and pharmaceutical companies in Australia and around the world. The APME is a collaboration between Monash University, Global Medical Solutions Australia, and Telix Pharmaceuticals. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. Dr Maggie Aulsebrook obtained her PhD in Chemistry at Monash University and specialises in the development and clinical translation of radiopharmaceuticals. She has led the development of several investigational radiopharmaceuticals for first-in-human application. Maggie leads the Radiochemistry Platform at Monash Biomedical Imaging.
Why do some animals have more than two eyes?
The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.
Dissecting subcircuits underlying hippocampal function
Liset M de la Prida is a Physicist (1994) and PhD in Neuroscience (1998), who leads the Laboratorio de Circuitos Neuronales at the Instituto Cajal, Madrid, Spain (http://www.hippo-circuitlab.es). The main focus of her lab is to understand the function of the hippocampal circuits in the normal and the diseased brain, in particular oscillations and neuronal representations. She is a leading international expert in the study of the basic mechanisms of physiological ripples and epileptic fast ripples, with strong visibility as developer of novel groundbreaking electrophysiological tools. Dr. de la Prida serves as an Editor for prestigious journals including eLife, Journal of Neuroscience Methods and eNeuro, and has commissioning duties in the American Epilepsy Society, FENS and the Spanish Society for Neurosciences.
MBI Webinar on preclinical research into brain tumours and neurodegenerative disorders
WEBINAR 1 Breaking the barrier: Using focused ultrasound for the development of targeted therapies for brain tumours presented by Dr Ekaterina (Caty) Salimova, Monash Biomedical Imaging Glioblastoma multiforme (GBM) - brain cancer - is aggressive and difficult to treat as systemic therapies are hindered by the blood-brain barrier (BBB). Focused ultrasound (FUS) - a non-invasive technique that can induce targeted temporary disruption of the BBB – is a promising tool to improve GBM treatments. In this webinar, Dr Ekaterina Salimova will discuss the MRI-guided FUS modality at MBI and her research to develop novel targeted therapies for brain tumours. Dr Ekaterina (Caty) Salimova is a Research Fellow in the Preclinical Team at Monash Biomedical Imaging. Her research interests include imaging cardiovascular disease and MRI-guided focused ultrasound for investigating new therapeutic targets in neuro-oncology. - WEBINAR 2 Disposition of the Kv1.3 inhibitory peptide HsTX1[R14A], a novel attenuator of neuroinflammation presented by Sanjeevini Babu Reddiar, Monash Institute of Pharmaceutical Sciences The voltage-gated potassium channel (Kv1.3) in microglia regulates membrane potential and pro-inflammatory functions, and non-selective blockade of Kv1.3 has shown anti-inflammatory and disease improvement in animal models of Alzheimer’s and Parkinson’s diseases. Therefore, specific inhibitors of pro-inflammatory microglial processes with CNS bioavailability are urgently needed, as disease-modifying treatments for neurodegenerative disorders are lacking. In this webinar, PhD candidate Ms Sanju Reddiar will discuss the synthesis and biodistribution of a Kv1.3-inhibitory peptide using a [64Cu]Cu-DOTA labelled conjugate. Sanjeevini Babu Reddiar is a PhD student at the Monash Institute of Pharmaceutical Sciences. She is working on a project identifying the factors governing the brain disposition and blood-brain barrier permeability of a Kv1.3-blocking peptide.
Brain-body interactions that modulate fear
In most animals including in humans, emotions occur together with changes in the body, such as variations in breathing or heart rate, sweaty palms, or facial expressions. It has been suggested that this interoceptive information acts as a feedback signal to the brain, enabling adaptive modulation of emotions that is essential for survival. As such, fear, one of our basic emotions, must be kept in a functional balance to minimize risk-taking while allowing for the pursuit of essential needs. However, the neural mechanisms underlying this adaptive modulation of fear remain poorly understood. In this talk, I want to present and discuss the data from my PhD work where we uncover a crucial role for the interoceptive insular cortex in detecting changes in heart rate to maintain an equilibrium between the extinction and maintenance of fear memories in mice.
ISYNC: International SynAGE Conference on Healthy Ageing
The SynAGE committee members are thrilled to host ISYNC, the International SynAGE conference on healthy ageing, on 28-30 March 2022 in Magdeburg, Germany. This conference has been entirely organised from young scientists of the SynAGE research training group RTG 2413 (www.synage.de) and represents a unique occasion for researchers from all over the world to bring together and join great talks and sessions with us and our guests. A constantly updated list of our speakers can be found on the conference webpage: www.isync-md.de. During the conference, attendees will have access to a range of symposia which will deal with Glia, Biomarkers and Immunoresponses during ageing to neurodegeneration brain integrity and cognitive function in health and diseases. Moreover, the conference will offer social events especially for young researchers and the possibility to network together in a beautiful and suggestive location where our conference will take place: the Johanniskirche. The event will be happening in person, but due to the current pandemic situation and restrictions we are planning the conference as a hybrid event with lots of technical support to ensure that every participant can follow the talks and take part in the scientific discussions. The registration to our ISYNC conference is free of charge. However, the number of people attending the conference in person is restricted to 100. Afterwards, registrations will be accepted for joining virtually only. The registration is open until 15.02.2022. Especially for PhD and MD Students: Check our available Travel Grants, Poster Prize and SynAGE Award Dinner: https://www.isync-md.de/index.php/phd-md-specials/ If you need any further information don’t hesitate to contact us via email: contact@synage.de. We are looking forward to meet you in 2022 in Magdeburg to discuss about our research and ideas and bless together science. Your ISYNC organization Committee
Connecting structure and function in early visual circuits
How does the brain interpret signals from the outside world? Walking through a park, you might take for granted the ease with which you can understand what you see. Rather than seeing a series of still snapshots, you are able to see simple, fluid movement — of dogs running, squirrels foraging, or kids playing basketball. You can track their paths and know where they are headed without much thought. “How does this process take place?” asks Rudy Behnia, PhD, a principal investigator at Columbia’s Mortimer B. Zuckerman Mind Brain Behavior Institute. “For most of us, it’s hard to imagine a world where we can’t see motion, shapes, and color; where we can’t have a representation of the physical world in our head.” And yet this representation does not happen automatically — our brain has no direct connection with the outside world. Instead, it interprets information taken in by our senses. Dr. Behnia is studying how the brain builds these representations. As a starting point, she focuses on how we see motion
Synergy of color and motion vision for detecting approaching objects in Drosophila
I am working on color vision in Drosophila, identifying behaviors that involve color vision and understanding the neural circuits supporting them (Longden 2016). I have a long-term interest in understanding how neural computations operate reliably under changing circumstances, be they external changes in the sensory context, or internal changes of state such as hunger and locomotion. On internal state-modulation of sensory processing, I have shown how hunger alters visual motion processing in blowflies (Longden et al. 2014), and identified a role for octopamine in modulating motion vision during locomotion (Longden and Krapp 2009, 2010). On responses to external cues, I have shown how one kind of uncertainty in the motion of the visual scene is resolved by the fly (Saleem, Longden et al. 2012), and I have identified novel cells for processing translation-induced optic flow (Longden et al. 2017). I like working with colleagues who use different model systems, to get at principles of neural operation that might apply in many species (Ding et al. 2016, Dyakova et al. 2015). I like work motivated by computational principles - my background is computational neuroscience, with a PhD on models of memory formation in the hippocampus (Longden and Willshaw, 2007).
Neural mechanisms of altered states of consciousness under psychedelics
Interest in psychedelic compounds is growing due to their remarkable potential for understanding altered neural states and their breakthrough status to treat various psychiatric disorders. However, there are major knowledge gaps regarding how psychedelics affect the brain. The Computational Neuroscience Laboratory at the Turner Institute for Brain and Mental Health, Monash University, uses multimodal neuroimaging to test hypotheses of the brain’s functional reorganisation under psychedelics, informed by the accounts of hierarchical predictive processing, using dynamic causal modelling (DCM). DCM is a generative modelling technique which allows to infer the directed connectivity among brain regions using functional brain imaging measurements. In this webinar, Associate Professor Adeel Razi and PhD candidate Devon Stoliker will showcase a series of previous and new findings of how changes to synaptic mechanisms, under the control of serotonin receptors, across the brain hierarchy influence sensory and associative brain connectivity. Understanding these neural mechanisms of subjective and therapeutic effects of psychedelics is critical for rational development of novel treatments and for the design and success of future clinical trials. Associate Professor Adeel Razi is a NHMRC Investigator Fellow and CIFAR Azrieli Global Scholar at the Turner Institute of Brain and Mental Health, Monash University. He performs cross-disciplinary research combining engineering, physics, and machine-learning. Devon Stoliker is a PhD candidate at the Turner Institute for Brain and Mental Health, Monash University. His interest in consciousness and psychiatry has led him to investigate the neural mechanisms of classic psychedelic effects in the brain.
3 Minutes Thesis Competition: Pre-selection event
On behalf of NeurotechEU, we are pleased to invite you to participate in the Summit 2021 pre-selection event on October 23, 2021. The event will be held online via the Platform Crowdcast.io, and it is going to be organized by NeurotechEU-The European University of Brain and Technology. Students from all over NeurotechEU have the chance to present their research (bachelor’s thesis, Master’s thesis, PhD, post-doc…) following the methodology of three minutes thesis (3MT from the University of Queensland): https://threeminutethesis.uq.edu.au/resources/3mt-competitor-guide. There will be one session per university and at the end of it, two semi-finalists will be selected from each university. They will compete in the Summit 2021 on November 22nd. There will be prizes for the winners who will be selected by voting of the audience.
Analyzing Retinal Disease Using Electron Microscopic Connectomics
John DowlingJohn E. Dowling received his AB and PhD from Harvard University. He taught in the Biology Department at Harvard from 1961 to 1964, first as an Instructor, then as assistant professor. In 1964 he moved to Johns Hopkins University, where he held an appointment as associate professor of Ophthalmology and Biophysics. He returned to Harvard as professor of Biology in 1971, was the Maria Moors Cabot Professor of Natural Sciences from 1971-2001, Harvard College professor from 1999-2004 and is presently the Gordon and Llura Gund Professor of Neurosciences. Dowling was chairman of the Biology Department at Harvard from 1975 to 1978 and served as associate dean of the faculty of Arts and Sciences from 1980 to 1984. He was Master of Leverett House at Harvard from 1981-1998 and currently serves as president of the Corporation of The Marine Biological Laboratory in Woods Hole. He is a Fellow of the American Academy of Arts and Sciences, a member of the National Academy of Sciences and a member of the American Philosophical Society. Awards that Dowling received include the Friedenwald Medal from the Association of Research in Ophthalmology and Vision in 1970, the Annual Award of the New England Ophthalmological Society in 1979, the Retinal Research Foundation Award for Retinal Research in 1981, an Alcon Vision Research Recognition Award in 1986, a National Eye Institute's MERIT award in 1987, the Von Sallman Prize in 1992, The Helen Keller Prize for Vision Research in 2000 and the Llura Ligget Gund Award for Lifetime Achievement and Recognition of Contribution to the Foundation Fighting Blindness in 2001. He was granted an honorary MD degree by the University of Lund (Sweden) in 1982 and an honorary Doctor of Laws degree from Dalhousie University (Canada) in 2012. Dowling's research interests have focused on the vertebrate retina as a model piece of the brain. He and his collaborators have long been interested in the functional organization of the retina, studying its synaptic organization, the electrical responses of the retinal neurons, and the mechanisms underlying neurotransmission and neuromodulation in the retina. Dowling became interested in zebrafish as a system in which one could explore the development and genetics of the vertebrate retina about 20 years ago. Part of his research team has focused on retinal development in zebrafish and the role of retinoic acid in early eye and photoreceptor development. A second group has developed behavioral tests to isolate mutations, both recessive and dominant, specific to the visual system.
Developing metal-based radiopharmaceuticals for imaging and therapy
Personalised medicine will be greatly enhanced with the introduction of new radiopharmaceuticals for the diagnosis and treatment of various cancers, as well as cardiovascular disease and brain disorders. The unprecedented interest in developing theranostic radiopharmaceuticals is mainly due to the recent clinical successes of radiometal-based products including: • 177LuDOTA-TATE (trade name Lutathera, FDA approved in 2018), a peptide-based tracer that is used for treating metastatic neuroendocrine tumours • Ga 68 PSMA-11 (FDA approved in 2020), a positron emission tomography agent for imaging prostate-specific membrane antigen positive lesions in men with prostate cancer. In this webinar, Dr Brett Paterson and PhD candidate Mr Cormac Kelderman will present their research on developing the chemistry and radiochemistry to produce new radiometal-based imaging and therapy agents. They will discuss the synthesis of new molecules, the optimisation of the radiochemistry, and results from preclinical evaluations. Dr Brett Paterson is a National Imaging Facility Fellow at Monash Biomedical Imaging and academic group leader in the School of Chemistry, Monash University. His research focuses on the development of radiochemistry and new radiopharmaceuticals. Cormac Kelderman is a PhD candidate under the supervision of Dr Brett Paterson in the School of Chemistry, Monash University. His research focuses on developing new bis(thiosemicarbazone) chelators for technetium-99m SPECT imaging.
Generating and personalizing social behavior
Dr. Stowers obtained her PhD at Harvard University and remained there to undertake the study of olfactory-mediated behavior with Catherine Dulac. During this time she completed experiments identifying vomeronasal organ neurons as sensors for mouse pheromones. In 2002 she began independent work at The Scripps Research Institute where she remains today. Her lab is leveraging the olfactory system to identify and study the information code that underlies emotion-linked innate behavior. She has been a Pew Scholar and a Senior Scholar in Neuroscience from the Ellison Medical Foundation.
Mapping the brain’s remaining terra incognita
In this webinar, Dr Ye Tian and A/Prof Andrew Zalesky will present new research on mapping the functional architecture of the human subcortex. They used 3T and 7T functional MRI from more than 1000 people to map one of the most detailed functional atlases of the human subcortex to date. Comprising four hierarchical scales, the new atlas reveals the complex topographic organisation of the subcortex, which dynamically adapts to changing cognitive demands. The atlas enables whole-brain mapping of connectomes and has been used to optimise targeting of deep brain stimulation. This joint work with Professors Michael Breakspear and Daniel Margulies was recently published in Nature Neuroscience. In the second part of the webinar, Dr Ye Tian will present her current research on the biological ageing of different body systems, including the human brain, in health and degenerative conditions. Conducted in more than 30,000 individuals, this research reveals associations between the biological ageing of different body systems. She will show the impact of lifestyle factors on ageing and how advanced ageing can predict the risk of mortality. Associate Professor Andrew Zalesky is a Principal Researcher with a joint appointment between the Faculties of Engineering and Medicine at The University of Melbourne. He currently holds a NHMRC Senior Research Fellowship and serves as Associate Editor for Brain Topography, Neuroimage Clinical and Network Neuroscience. Dr Zalesky is recognised for the novel tools that he has developed to analyse brain networks and their application to the study of neuropsychiatric disorders. Dr Ye Tian is a postdoctoral researcher at the Department of Psychiatry, University of Melbourne. She received her PhD from the University of Melbourne in 2020, during which she established the Melbourne Subcortex Atlas. Dr Tian is interested in understanding brain organisation and using brain imaging techniques to unveil neuropathology underpinning neuropsychiatric disorders.
Neurotoxicity is a major health problem in Africa: focus on Parkinson's / Parkinsonism
Parkinson's disease (PD) is the second most present neurodegenerative disease in the world after Alzheimer's. It is due to the progressive and irreversible loss of dopaminergic neurons of the substantia nigra Pars Compacta. Alpha synuclein deposits and the appearance of Lewi bodies are systematically associated with it. PD is characterized by four cardinal motor symptoms: bradykinesia / akinesia, rigidity, postural instability and tremors at rest. These symptoms appear when 80% of the dopaminergic endings disappear in the striatum. According to Braak's theory, non-motor symptoms appear much earlier and this is particularly the case with anxiety, depression, anhedonia, and sleep disturbances. In 90 to 95% of cases, the causes of the appearance of the disease remain unknown, but polluting toxic molecules are incriminated more and more. In Africa, neurodegenerative diseases of the Parkinson's type are increasingly present and a parallel seems to exist between the increase in cases and the presence of toxic and polluting products such as metals. My Web conference will focus on this aspect, i.e. present experimental arguments which reinforce the hypothesis of the incrimination of these pollutants in the incidence of Parkinson's disease and / or Parkinsonism. Among the lines of research that we have developed in my laboratory in Rabat, Morocco, I have chosen this one knowing that many of our PhD students and IBRO Alumni are working or trying to develop scientific research on neurotoxicity in correlation with pathologies of the brain.
Emergent scientists discuss Alzheimer's disease
This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.
Growing up in Science
Have you ever wondered what your advisor struggled with as a graduate student? What they struggle with now? Growing up in science is a conversation series featuring personal narratives of becoming and being a scientist, with a focus on the unspoken challenges of a life in science. Growing up in Science was started in 2014 at New York University and is now worldwide. This article describes the origin and impact of the series. At a typical Growing up in Science event, one faculty member shares their life story, with a focus on struggles, failures, doubts, detours, and weaknesses. Common topics include dealing with expectations, impostor syndrome, procrastination, luck, rejection, conflicts with advisors, and work-life balance, life outside academia but these topics are always embedded in the speaker’s broader narrative. Cortex Club is hosting its first Growing up in science event! Join us on Friday the 31st July at 4pm for hearing the unofficial story of Dr André Marques-Smith, computational neuroscientist at CoMind (read his official and unofficial story at https://cortexclub.com/event/growing-up-in-science-oxford/). Details to join the talk will be circulated via the mailing list (to join our mailing list, follow the instructions at https://cortexclub.com/join-us/).
phd coverage
45 items