Physiological Data
physiological data
Latest
Modeling the Navigational Circuitry of the Fly
Navigation requires orienting oneself relative to landmarks in the environment, evaluating relevant sensory data, remembering goals, and convert all this information into motor commands that direct locomotion. I will present models, highly constrained by connectomic, physiological and behavioral data, for how these functions are accomplished in the fly brain.
What does time of day mean for vision?
Profound changes in the visual environment occur over the course of the day-night cycle. There is therefore a profound pressure for cells and circuits within the visual system to adjust their function over time, to match the prevailing visual environment. Here, I will discuss electrophysiological data collected from nocturnal and diurnal rodents that reveal how the visual code is ‘temporally optimised’ by 1) the retina’s circadian clock, and 2) a change in behavioural temporal niche.
Direction selectivity in hearing: monaural phase sensitivity in octopus neurons
The processing of temporal sound features is fundamental to hearing, and the auditory system displays a plethora of specializations, at many levels, to enable such processing. Octopus neurons are the most extreme temporally-specialized cells in the auditory (and perhaps entire) brain, which make them intriguing but also difficult to study. Notwithstanding the scant physiological data, these neurons have been a favorite cell type of modeling studies which have proposed that octopus cells have critical roles in pitch and speech perception. We used a range of in vivo recording and labeling methods to examine the hypothesis that tonotopic ordering of cochlear afferents combines with dendritic delays to compensate for cochlear delay - which would explain the highly entrained responses of octopus cells to sound transients. Unexpectedly, the experiments revealed that these neurons have marked selectivity to the direction of fast frequency glides, which is tied in a surprising way to intrinsic membrane properties and subthreshold events. The data suggest that octopus cells have a role in temporal comparisons across frequency and may play a role in auditory scene analysis.
The Impact of Racism-related Stress on Neurobiological Systems in Black Americans”
Black Americans experience diverse racism-related stressors throughout the lifespan. Disproportionately high trauma exposure, economic disadvantage, explicit racism and inequitable treatment are stressors faced by many Black Americans. These experiences have a cumulative negative impact on psychological and physical health. However, little is understood about how experiences of racism, such as discrimination, can mediate health outcomes via their effects on neurobiology. I will present clinical, behavioral, physiological and neurobiological data from Black American participants in the Grady Trauma Project, a longstanding study of trauma conducted in inner-city Atlanta. These data will be discussed in the context of both risk and resilience/adaptation perspectives. Finally, recommendations for future clinical neuroscience research and targets for intervention in marginalized populations will be discussed.
Hebbian learning, its inference, and brain oscillation
Despite the recent success of deep learning in artificial intelligence, the lack of biological plausibility and labeled data in natural learning still poses a challenge in understanding biological learning. At the other extreme lies Hebbian learning, the simplest local and unsupervised one, yet considered to be computationally less efficient. In this talk, I would introduce a novel method to infer the form of Hebbian learning from in vivo data. Applying the method to the data obtained from the monkey inferior temporal cortex for the recognition task indicates how Hebbian learning changes the dynamic properties of the circuits and may promote brain oscillation. Notably, recent electrophysiological data observed in rodent V1 showed that the effect of visual experience on direction selectivity was similar to that observed in monkey data and provided strong validation of asymmetric changes of feedforward and recurrent synaptic strengths inferred from monkey data. This may suggest a general learning principle underlying the same computation, such as familiarity detection across different features represented in different brain regions.
Untangling brain wide current flow using neural network models
Rajanlab designs neural network models constrained by experimental data, and reverse engineers them to figure out how brain circuits function in health and disease. Recently, we have been developing a powerful new theory-based framework for “in-vivo tract tracing” from multi-regional neural activity collected experimentally. We call this framework CURrent-Based Decomposition (CURBD). CURBD employs recurrent neural networks (RNNs) directly constrained, from the outset, by time series measurements acquired experimentally, such as Ca2+ imaging or electrophysiological data. Once trained, these data-constrained RNNs let us infer matrices quantifying the interactions between all pairs of modeled units. Such model-derived “directed interaction matrices” can then be used to separately compute excitatory and inhibitory input currents that drive a given neuron from all other neurons. Therefore different current sources can be de-mixed – either within the same region or from other regions, potentially brain-wide – which collectively give rise to the population dynamics observed experimentally. Source de-mixed currents obtained through CURBD allow an unprecedented view into multi-region mechanisms inaccessible from measurements alone. We have applied this method successfully to several types of neural data from our experimental collaborators, e.g., zebrafish (Deisseroth lab, Stanford), mice (Harvey lab, Harvard), monkeys (Rudebeck lab, Sinai), and humans (Rutishauser lab, Cedars Sinai), where we have discovered both directed interactions brain wide and inter-area currents during different types of behaviors. With this powerful framework based on data-constrained multi-region RNNs and CURrent Based Decomposition (CURBD), we ask if there are conserved multi-region mechanisms across different species, as well as identify key divergences.
The When, Where and What of visual memory formation
The eyes send a continuous stream of about two million nerve fibers to the brain, but only a fraction of this information is stored as visual memories. This talk will detail three neurocomputational models that attempt an understanding how the visual system makes on-the-fly decisions about how to encode that information. First, the STST family of models (Bowman & Wyble 2007; Wyble, Potter, Bowman & Nieuwenstein 2011) proposes mechanisms for temporal segmentation of continuous input. The conclusion of this work is that the visual system has mechanisms for rapidly creating brief episodes of attention that highlight important moments in time, and also separates each episode from temporally adjacent neighbors to benefit learning. Next, the RAGNAROC model (Wyble et al. 2019) describes a decision process for determining the spatial focus (or foci) of attention in a spatiotopic field and the neural mechanisms that provide enhancement of targets and suppression of highly distracting information. This work highlights the importance of integrating behavioral and electrophysiological data to provide empirical constraints on a neurally plausible model of spatial attention. The model also highlights how a neural circuit can make decisions in a continuous space, rather than among discrete alternatives. Finally, the binding pool (Swan & Wyble 2014; Hedayati, O’Donnell, Wyble in Prep) provides a mechanism for selectively encoding specific attributes (i.e. color, shape, category) of a visual object to be stored in a consolidated memory representation. The binding pool is akin to a holographic memory system that layers representations of select latent representations corresponding to different attributes of a given object. Moreover, it can bind features into distinct objects by linking them to token placeholders. Future work looks toward combining these models into a coherent framework for understanding the full measure of on-the-fly attentional mechanisms and how they improve learning.
Inferring brain-wide current flow using data-constrained neural network models
Rajanlab designs neural network models constrained by experimental data, and reverse engineers them to figure out how brain circuits function in health and disease. Recently, we have been developing a powerful new theory-based framework for “in-vivo tract tracing” from multi-regional neural activity collected experimentally. We call this framework CURrent-Based Decomposition (CURBD). CURBD employs recurrent neural networks (RNNs) directly constrained, from the outset, by time series measurements acquired experimentally, such as Ca2+ imaging or electrophysiological data. Once trained, these data-constrained RNNs let us infer matrices quantifying the interactions between all pairs of modeled units. Such model-derived “directed interaction matrices” can then be used to separately compute excitatory and inhibitory input currents that drive a given neuron from all other neurons. Therefore different current sources can be de-mixed – either within the same region or from other regions, potentially brain-wide – which collectively give rise to the population dynamics observed experimentally. Source de-mixed currents obtained through CURBD allow an unprecedented view into multi-region mechanisms inaccessible from measurements alone. We have applied this method successfully to several types of neural data from our experimental collaborators, e.g., zebrafish (Deisseroth lab, Stanford), mice (Harvey lab, Harvard), monkeys (Rudebeck lab, Sinai), and humans (Rutishauser lab, Cedars Sinai), where we have discovered both directed interactions brain wide and inter-area currents during different types of behaviors. With this framework based on data-constrained multi-region RNNs and CURrent Based Decomposition (CURBD), we can ask if there are conserved multi-region mechanisms across different species, as well as identify key divergences.
Tips of MRI Data Acquisition at CCBBI
MRI data quality is crucial to the result. This workshop talks some aspects we need to pay attention during the data acquisition, including FoV/slice brain coverage, synchronization between image acquisition and stimulus presentation, instruction to participant, real time quality monitoring, the usage of physiological data. Prior to the meeting, we are collecting questions for Xiangrui on anything related to mri protocol/parameters: https://www.tricider.com/admin/2YW93TsWZJ3/2DBkJUoE5Ot
physiological data coverage
9 items