plastic changes
Latest
Synapses, Shadows and Stress Contagion
Survival is predicated on the ability of an organism to respond to stress. The reliability of this response is ensured by a synaptic architecture that is relatively inflexible (i.e. hard-wired). Our work has shown that in naive animals, synapses on CRH neurons in the paraventricular nucleus of the hypothalamus are very reluctant to modification. If animals are stressed, however, these synapses become willing to learn. This seminar will focus on mechanisms linking acute stress to metaplastic changes at glutamate synapses, and also show how stress, and these synaptic changes can be transmitted from one individual to another.
Molecular and cellular mechanisms controlling neural stem cell activity
Neural stem cells (NSCs) generate new neurons throughout life. We use imaging-, genome editing-, and transgenesis-based approaches as well as cellular models of human diseases using pluripotent embryonic cells to study the molecular and cellular framework of NSC biology in the developing and adult brain. Aim of our research is to understand how physiologic and disease-associated alterations of neurogenesis are translated into stem cell-associated plastic changes in the developing and adult brain on a molecular, cellular, and behavioral level.
The Picower Institute Fall 2021 Symposium, Dendrites: Molecules, Structure, and Function
Dendrites play a central role in neuronal computation, and many complex mechanisms shape their structure, function, and connectivity. Dendrites can undergo plastic changes during development and learning, as well as during neurodevelopmental and neurodegenerative disease. We will discuss how the molecular and electrophysiological properties of dendrites enable them to perform complex computations important for sensory-motor processing and higher cognitive function, and how these can go awry.
Plasticity of Pain and Pleasure
What happens when the nervous system fails to adapt? Our perception of the world relies on a nervous system that learns and adapts to sensory information. Based on our experience we can predict what a wooden surface will feel like, that fire is hot, and that a gentle caress from a partner can be soothing. But our sensory experience of the world is not static – warm water can feel like fire on sunburned skin and the gentle brush of our clothes can be excruciating after an injury. In pathological conditions such as chronic pain, changes in nervous system function can cause normally innocuous sensory stimuli to be perceived as aversive or painful long after the initial injury has happened. These changes can sometimes be similar to the formation of a pain ‘memory’ that can modulate and distort our perception of sensory information. Our research program seeks to understand how fundamental processes that govern the formation and maintenance of plastic changes in the nervous system can lead to pathological conditions and how we can reverse engineer these changes to treat chronic conditions.
Plastic changes of neurons and pericellular synapses in spinal cord after peripheral nerve injury
FENS Forum 2024
EMG monitoring of central neuroplastic changes after nerve transfer procedures in brachial plexus injury
FENS Forum 2024
The order and timing of II/III layer activation determine the magnitude and direction of the plastic changes in layer V of the primary motor cortex
FENS Forum 2024
plastic changes coverage
7 items