← Back

Postdoc

Topic spotlight
TopicNeuro

postdoc

Discover seminars, jobs, and research tagged with postdoc across Neuro.
19 curated items12 Seminars7 Positions
Updated 3 days ago
19 items · postdoc

Latest

19 results
PositionNeuroscience

N/A

State University of New York (SUNY) Downstate Health Sciences University
Brooklyn, New York
Dec 21, 2025

A Postdoc position is now available in the Dura-Bernal Lab at the State University of New York (SUNY) Downstate Health Sciences University (Brooklyn, New York), working on a new exciting multidisciplinary project entitled "Restoring motor function after spinal cord injury using multiscale modeling to decode neural latent dynamics from motor cortex EEG." The position is funded by New York State (NYS) Department of Health (DOH) Spinal Cord Injury Research program. The project aims to improve brain-machine interface decoders by combining multiscale modeling of motor cortex circuits, analysis of low-dimensional neural manifolds associated with behavior, and realistic simulation of EEG signals.

PositionNeuroscience

Kendrick Kay

Center for Magnetic Resonance Research, University of Minnesota
University of Minnesota
Dec 21, 2025

The lab of Dr. Kendrick Kay at the Center for Magnetic Resonance Research at the University of Minnesota is recruiting one or more postdocs. The lab seeks to integrate broad interdisciplinary insights to understand function in the visual system. One postdoc position is on a newly funded NIH R01 to develop, design, and collect a large-scale 7T fMRI dataset that samples a wide range of cognitive tasks on a common set of visual stimuli. The project is being conducted in close collaboration with co-PI Dr. Clayton Curtis (New York University). Activities in this grant include either (i) designing, collecting, and analyzing the large-scale neuroimaging dataset, (ii) technical work focused on extending and expanding the GLMsingle analysis method, and/or (iii) other related experimental or modeling work in visual/cognitive neuroscience. Another postdoc position is aimed towards integrating fMRI and intracranial EEG measurements during visual tasks (NSD-iEEG) and electrical stimulation. The general goal of this effort is to better understand signaling across the visual hierarchy (from early visual to higher order areas ventral temporal cortex and frontal/parietal areas). This project is in collaboration with PI Dr. Dora Hermes (Mayo Clinic).

PositionNeuroscience

Dr. Demian Battaglia/Dr. Romain Goutagny

University of Strasbourg, Functional System's Dynamics team – FunSy
University of Strasbourg, France
Dec 21, 2025

The postdoc position is under the joint co-mentoring of Dr. Demian Battaglia and Dr. Romain Goutagny at the University of Strasbourg, France, in the Functional System's Dynamics team – FunSy. The position starts as soon as possible and can last up to two years. The job offer is funded by the French ANR 'HippoComp' project, which focuses on the complexity of hippocampal oscillations and the hypothesis that such complexity can serve as a computational resource. The team performs electrophysiological recordings in the hippocampus and cortex during spatial navigation and memory tasks in mice (wild type and mutant developing various neuropathologies) and have access to vast data through local and international cooperation. They use a large spectrum of computational tools ranging from time-series and network analyses, information theory, and machine-learning to multi-scale computational modeling.

PositionNeuroscience

Prof. Maxime Baud/Dr. Timothée Proix

Inselspital, Bern
University of Bern, Switzerland
Dec 21, 2025

A postdoc position is available under the shared supervision of Prof. Maxime Baud and Dr. Timothée Proix, who both specialize in quantitative neuroscience research. Together, they are running a three-year clinical trial involving patients with epilepsy who received a minimally invasive EEG device beneath the scalp for the chronic recording (months) of brain signals during wake and sleep. The postdoc will help with the analysis of massive amounts of EEG data, with a desire to build forecasting algorithms aiming at estimating the risk of seizures 24 hours in advance. The project lies at the interface between machine learning and EEG data analysis. The goal of the project is to develop machine learning algorithms to forecast seizures.

PositionNeuroscience

Geoffrey J Goodhill

Washington University School of Medicine
St. Louis, MO
Dec 21, 2025

An NIH-funded collaboration between David Prober (Caltech), Thai Truong (USC) and Geoff Goodhill (Washington University in St Louis) aims to gain new insight into the neural circuits underlying sleep, through a combination of whole-brain neural recordings in zebrafish and theoretical/computational modeling. A postdoc position is available in the Goodhill lab to contribute to the modeling and computational analysis components. Using novel 2-photon imaging technologies Prober and Truong are recording from the entire larval zebrafish brain at single-neuron resolution continuously for long periods of time, examining neural circuit activity during normal day-night cycles and in response to genetic and pharmacological perturbations. The Goodhill lab is analyzing the resulting huge datasets using a variety of sophisticated computational approaches, and using these results to build new theoretical models that reveal how neural circuits interact to govern sleep.

PositionNeuroscience

Peter C. Petersen

Department of Neuroscience, University of Copenhagen
University of Copenhagen, Blegdamsvej 3B, building 33.3.52. 2200 Copenhagen, Denmark
Dec 21, 2025

The postdoc position is focused on the development of BrainSTEM, a web application designed as an electronic lab notebook for describing neurophysiological experiments as well as a data-sharing platform for the community. The role involves the design of a standard language for describing experimental neuroscience, semantic search functionality, stronger adoption of the FAIR principles, and stimulating and supporting community uptake. The project is primarily funded by the NIH, through the Brain Initiative U19 Oxytocin grant. The project will include occasional travels, e.g., to New York (NYU), Brain Initiate meetings, SfN, FENS, and to pilot user labs.

PositionNeuroscience

Maximilian Riesenhuber, PhD

Georgetown University
Georgetown University Medical Center, Research Building Room WP-12, 3970 Reservoir Rd., NW, Washington, DC 20007
Dec 21, 2025

We have an opening for a postdoc position investigating the neural bases of deep multimodal learning in the brain. The project involves EEG and laminar 7T imaging (in collaboration with Dr. Peter Bandettini’s lab at NIMH) to test computational hypotheses for how the brain learns multimodal concept representations. Responsibilities of the postdoc include running EEG and fMRI experiments, data analysis and manuscript preparation. Georgetown University has a vibrant neuroscience community with over fifty labs participating in the Interdisciplinary Program in Neuroscience and a number of relevant research centers, including the new Center for Neuroengineering (cne.georgetown.edu). Interested candidates should submit a CV, a brief (1 page) statement of research interests, representative reprints, and the names and contact information of three references to Interfolio via https://apply.interfolio.com/148520. Faxed, emailed, or mailed applications will not be accepted. Questions about the position can be directed to Maximilian Riesenhuber (mr287@georgetown.edu).

SeminarNeuroscience

Harnessing Big Data in Neuroscience: From Mapping Brain Connectivity to Predicting Traumatic Brain Injury

Franco Pestilli
University of Texas, Austin, USA
May 13, 2025

Neuroscience is experiencing unprecedented growth in dataset size both within individual brains and across populations. Large-scale, multimodal datasets are transforming our understanding of brain structure and function, creating opportunities to address previously unexplored questions. However, managing this increasing data volume requires new training and technology approaches. Modern data technologies are reshaping neuroscience by enabling researchers to tackle complex questions within a Ph.D. or postdoctoral timeframe. I will discuss cloud-based platforms such as brainlife.io, that provide scalable, reproducible, and accessible computational infrastructure. Modern data technology can democratize neuroscience, accelerate discovery and foster scientific transparency and collaboration. Concrete examples will illustrate how these technologies can be applied to mapping brain connectivity, studying human learning and development, and developing predictive models for traumatic brain injury (TBI). By integrating cloud computing and scalable data-sharing frameworks, neuroscience can become more impactful, inclusive, and data-driven..

SeminarNeuroscience

Trends in NeuroAI - Brain-like topography in transformers (Topoformer)

Nicholas Blauch
Jun 7, 2024

Dr. Nicholas Blauch will present on his work "Topoformer: Brain-like topographic organization in transformer language models through spatial querying and reweighting". Dr. Blauch is a postdoctoral fellow in the Harvard Vision Lab advised by Talia Konkle and George Alvarez. Paper link: https://openreview.net/pdf?id=3pLMzgoZSA Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri | https://groups.google.com/g/medarc-fmri).

SeminarNeuroscienceRecording

Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care; Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders

Colleen Hanlon, PhD & Ghazaleh Soleimani, PhD
Brainsway / University of Minnesota
Mar 28, 2024

In March we will focus on TMS and host Ghazaleh Soleimani and Colleen Hanlon. The talks will talk place on Thursday, March 28th at noon ET – please be aware that this means 5PM CET since Boston already switched to summer time! Ghazaleh Soleimani, PhD, is a postdoctoral fellow in Dr Hamed Ekhtiari’s lab at the University of Minnesota. She is also the executive director of the International Network of tES/TMS for Addiction Medicine (INTAM). She will discuss “Adapting to diversity: Integrating variability in brain structure and function into personalized / closed-loop non-invasive brain stimulation for substance use disorders”. Colleen Hanlon, PhD, currently serves as a Vice President of Medical Affairs for BrainsWay, a company specializing in medical devices for mental health, including TMS. Colleen previously worked at the Medical University of South Carolina and Wake Forest School of Medicine. She received the International Brain Stimulation Early Career Award in 2023. She will discuss “Currents of Hope: how noninvasive brain stimulation is reshaping modern psychiatric care”. As always, we will also get a glimpse at the “Person behind the science”. Please register va talks.stimulatingbrains.org to receive the (free) Zoom link, subscribe to our newsletter, or follow us on Twitter/X for further updates!

SeminarNeuroscienceRecording

Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease

Doris Wang, MD, PhD & Stephanie Cernera, PhD
University of California, San Francisco, USA
Aug 31, 2023

On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Prefrontal top-down projections control context-dependent strategy selection

Olivier Gschwend
Medidee Services SA, (former postdoc at Cold Spring Harbor Laboratory)
Dec 7, 2022

The rules governing behavior often vary with behavioral contexts. As a result, an action rewarded in one context may be discouraged in another. Animals and humans are capable of switching between behavioral strategies under different contexts and acting adaptively according to the variable rules, a flexibility that is thought to be mediated by the prefrontal cortex (PFC). However, how the PFC orchestrates the context-dependent switch of strategies remains unclear. Here we show that pathway-specific projection neurons in the medial PFC (mPFC) differentially contribute to context-instructed strategy selection. In mice trained in a decision-making task in which a previously established rule and a newly learned rule are associated with distinct contexts, the activity of mPFC neurons projecting to the dorsomedial striatum (mPFC-DMS) encodes the contexts and further represents decision strategies conforming to the old and new rules. Moreover, mPFC-DMS neuron activity is required for the context-instructed strategy selection. In contrast, the activity of mPFC neurons projecting to the ventral midline thalamus (mPFC-VMT) does not discriminate between the contexts, and represents the old rule even if mice have adopted the new one. Furthermore, these neurons act to prevent the strategy switch under the new rule. Our results suggest that mPFC-DMS neurons promote flexible strategy selection guided by contexts, whereas mPFC-VMT neurons favor fixed strategy selection by preserving old rules.

SeminarNeuroscience

Neurosurgery for Mental Disorders: Challenging Mindsets; Combining Neuroimaging and Neurophysiology in Parkinson’s Disease

Ludvic Zrinzo, MD, PhD & Kara A. Johnson, PhD
National Hospital for Neurology and Neurosurgery / University of Florida
Oct 26, 2022

On Wednesday, October 26th, at noon ET / 6PM CET, we will host Kara Johnson, PhD, and Ludvic Zrinzo, MD PhD, for the inaugural session of our newly conceived talk series format entitled "Stimulating Brains". Kara A. Johnson, a postdoctoral fellow in Dr. Coralie de Hemptinne’s lab at the University of Florida, will present her work on “Combining imaging and neurophysiology in Parkinson’s disease”. Ludvic Zrinzo, Professor of functional neurosurgery and head of the University College London functional neurosurgery unit, will give us a glimpse at the “Person behind the science”, and give a talk on “Neurosurgery for mental disorders: challenging mindsets”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Why do some animals have more than two eyes?

Lauren Sumner-Rooney
Leibniz Institute for Research on Evolution and Biodiversity
May 9, 2022

The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.

SeminarNeuroscience

The generation of neural diversity

Claude Desplan
New York University
May 7, 2021

Claude Desplan is a Silver Professor of Biology and Neuroscience at NYU. He was born in Algeria and was trained at Ecole Normale Supérieure St. Cloud, France. He received his DSc at INSERM in Paris in 1983 and joined Pat O’Farrell at UCSF as a postdoc. There he demonstrated that the homeodomain, a conserved signature of many developmental genes, is a DNA binding motif. Currently, Dr. Desplan works at NYU where he investigates the generation of neural diversity using the Drosophila visual system.

SeminarNeuroscience

Mapping the brain’s remaining terra incognita

A/Prof Andrew Zalesky and Dr Ye Tian
Monash Biomedical Imaging
Apr 1, 2021

In this webinar, Dr Ye Tian and A/Prof Andrew Zalesky will present new research on mapping the functional architecture of the human subcortex. They used 3T and 7T functional MRI from more than 1000 people to map one of the most detailed functional atlases of the human subcortex to date. Comprising four hierarchical scales, the new atlas reveals the complex topographic organisation of the subcortex, which dynamically adapts to changing cognitive demands. The atlas enables whole-brain mapping of connectomes and has been used to optimise targeting of deep brain stimulation. This joint work with Professors Michael Breakspear and Daniel Margulies was recently published in Nature Neuroscience. In the second part of the webinar, Dr Ye Tian will present her current research on the biological ageing of different body systems, including the human brain, in health and degenerative conditions. Conducted in more than 30,000 individuals, this research reveals associations between the biological ageing of different body systems. She will show the impact of lifestyle factors on ageing and how advanced ageing can predict the risk of mortality. Associate Professor Andrew Zalesky is a Principal Researcher with a joint appointment between the Faculties of Engineering and Medicine at The University of Melbourne. He currently holds a NHMRC Senior Research Fellowship and serves as Associate Editor for Brain Topography, Neuroimage Clinical and Network Neuroscience. Dr Zalesky is recognised for the novel tools that he has developed to analyse brain networks and their application to the study of neuropsychiatric disorders. Dr Ye Tian is a postdoctoral researcher at the Department of Psychiatry, University of Melbourne. She received her PhD from the University of Melbourne in 2020, during which she established the Melbourne Subcortex Atlas. Dr Tian is interested in understanding brain organisation and using brain imaging techniques to unveil neuropathology underpinning neuropsychiatric disorders.

SeminarNeuroscience

Panel discussion: Practical advice for reproducibility in neuroscience

Dorothy Bishop, Verena Heise, Russ Poldrack, and Guillaume Rousselet
University of Oxford, Stanford University, University of Glasgow
Nov 10, 2020

This virtual, interactive panel on reproducibility in neuroscience will focus on practical advice that researchers at all career stages could implement to improve the reproducibility of their work, from power analyses and pre-registering reports to selecting statistical tests and data sharing. The event will comprise introductions of our speakers and how they came to be advocates for reproducibility in science, followed by a 25-minute discussion on reproducibility, including practical advice for researchers on how to improve their data collection, analysis, and reporting, and then 25 minutes of audience Q&A. In total, the event will last one hour and 15 minutes. Afterwards, some of the speakers will join us for an informal chat and Q&A reserved only for students/postdocs.

SeminarNeuroscienceRecording

Molecular controls over corticospinal neuron axon branching at specific spinal segments

Yasuhiro Itoh
Harvard
Oct 28, 2020

Corticospinal neurons (CSN) are the cortical projection neurons that innervate the spinal cord and some brainstem targets with segmental precision to control voluntary movement of specific functional motor groups, limb sections, or individual digits, yet molecular regulation over CSN segmental target specificity is essentially unknown. CSN subpopulations exhibit striking axon targeting specificity from development into maturity: Evolutionarily newer rostrolateral CSN exclusively innervate bulbar-cervical targets (CSNBC-lat), while evolutionarily older caudomedial CSN (CSNmed) are more heterogeneous, with distinct subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. The cervical cord, with its evolutionarily enhanced precision of forelimb movement, is innervated by multiple CSN subpopulations, suggesting inter-neuronal interactions in establishing corticospinal connectivity. I identify that Lumican, previously unrecognized in axon development, controls the specificity of cervical spinal cord innervation by CSN. Remarkably, Lumican, an extracellular matrix protein expressed by CSNBC-lat, non-cell-autonomously suppresses axon collateralization in the cervical cord by CSNmed. Intersectional viral labeling and mouse genetics further identify that Lumican controls axon collateralization by multiple subpopulations in caudomedial sensorimotor cortex. These results identify inter-axonal molecular crosstalk between CSN subpopulations as a novel mechanism controlling corticospinal connectivity and competitive specificity. Further, this mechanism has potential implications for evolutionary diversification of corticospinal circuitry with finer scale precision. "" Complementing this work, to comprehensively elucidate related axon projection mechanisms functioning at tips of growing CSN axons in vivo, I am currently applying experimental and analytic approaches recently developed in my postdoc lab (Poulopoulos*, Murphy*, Nature, 2019) to quantitatively and subcellularly “map” RNA and protein molecular machinery of subtype-specific growth cones, in parallel to their parent somata, isolated directly in vivo from developing subcerebral projection neurons (SCPN; the broader cortical output neuron population targeting both brainstem and spinal cord; includes CSN). I am investigating both normal development and GC-soma dysregulation with mutation of central CSN-SCPN transcriptional regulator Ctip2/Bcl11b.

SeminarNeuroscience

Emergent scientists discuss Alzheimer's disease

Christiana Bjørkli, Siddharth Ramanan
Norwegian University of Science and Technology, University of Cambridge
Oct 20, 2020

This seminar is part of our “Emergent Scientists” series, an initiative that provides a platform for scientists at the critical PhD/postdoc transition period to share their work with a broad audience and network. Summary: These talks cover Alzheimer’s disease (AD) research in both mice and humans. Christiana will discuss in particular the translational aspects of applying mouse work to humans and the importance of timing in disease pathology and intervention (e.g. timing between AD biomarkers vs. symptom onset, timing of therapy, etc.). Siddharth will discuss a rare variant of Alzheimer’s disease called “Logopenic Progressive Aphasia”, which presents with temporo-parietal atrophy yet relative sparing of hippocampal circuitry. Siddharth will discuss how, despite the unusual anatomical basis underlying this AD variant, degeneration of the angular gyrus in the left inferior parietal lobule contributes to memory deficits similar to those of typical amnesic Alzheimer’s disease. Christiana’s abstract: Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes severe deterioration of memory, cognition, behavior, and the ability to perform daily activities. The disease is characterized by the accumulation of two proteins in fibrillar form; Amyloid-β forms fibrils that accumulate as extracellular plaques while tau fibrils form intracellular tangles. Here we aim to translate findings from a commonly used AD mouse model to AD patients. Here we initiate and chronically inhibit neuropathology in lateral entorhinal cortex (LEC) layer two neurons in an AD mouse model. This is achieved by over-expressing P301L tau virally and chronically activating hM4Di DREADDs intracranially using the ligand dechloroclozapine. Biomarkers in cerebrospinal fluid (CSF) is measured longitudinally in the model using microdialysis, and we use this same system to intracranially administer drugs aimed at halting AD-related neuropathology. The models are additionally tested in a novel contextual memory task. Preliminary findings indicate that viral injections of P301L tau into LEC layer two reveal direct projections between this region and the outer molecular layer of dentate gyrus and the rest of hippocampus. Additionally, phosphorylated tau co-localize with ‘starter cells’ and appear to spread from the injection site. Preliminary microdialysis results suggest that the concentrations of CSF amyloid-β and tau proteins mirror changes observed along the disease cascade in patients. The disease-modifying drugs appear to halt neuropathological development in this preclincial model. These findings will lead to a novel platform for translational AD research, linking the extensive research done in rodents to clinical applications. Siddharth’s abstract: A distributed brain network supports our ability to remember past events. The parietal cortex is a critical member of this network, yet, its exact contributions to episodic remembering remain unclear. Neurodegenerative syndromes affecting the posterior neocortex offer a unique opportunity to understand the importance and role of parietal regions to episodic memory. In this talk, I introduce and explore the rare neurodegenerative syndrome of Logopenic Progressive Aphasia (LPA), an aphasic variant of Alzheimer’s disease presenting with early, left-lateralized temporo-parietal atrophy, amidst relatively spared hippocampal integrity. I then discuss two key studies from my recent Ph.D. work showcasing pervasive episodic and autobiographical memory dysfunction in LPA, to a level comparable to typical, amnesic Alzheimer’s disease. Using multimodal neuroimaging, I demonstrate how degeneration of the angular gyrus in the left inferior parietal lobule, and its structural connections to the hippocampus, contribute to amnesic profiles in this syndrome. I finally evaluate these findings in the context of memory profiles in other posterior cortical neurodegenerative syndromes as well as recent theoretical models underscoring the importance of the parietal cortex in the integration and representation of episodic contextual information.

postdoc coverage

19 items

Seminar12
Position7
Domain spotlight

Explore how postdoc research is advancing inside Neuro.

Visit domain