TopicNeuroscience

predictive timing

Latest

SeminarNeuroscienceRecording

Motor contribution to auditory temporal predictions

Benjamin Morillon
Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes
Dec 14, 2022

Temporal predictions are fundamental instruments for facilitating sensory selection, allowing humans to exploit regularities in the world. Recent evidence indicates that the motor system instantiates predictive timing mechanisms, helping to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Accordingly, in the auditory domain auditory-motor interactions are observed during perception of speech and music, two temporally structured sensory streams. I will present a behavioral and neurophysiological account for this theory and will detail the parameters governing the emergence of this auditory-motor coupling, through a set of behavioral and magnetoencephalography (MEG) experiments.

SeminarNeuroscienceRecording

The shared predictive roots of motor control and beat-based timing

Jonathan Cannon
MIT, USA
Feb 17, 2021

fMRI results have shown that the supplementary motor area (SMA) and the basal ganglia, most often discussed in their roles in generating action, are engaged by beat-based timing even in the absence of movement. Some have argued that the motor system is “recruited” by beat-based timing tasks due to the presence of motor-like timescales, but a deeper understanding of the roles of these motor structures is lacking. Reviewing a body of motor neurophysiology literature and drawing on the “active inference” framework, I argue that we can see the motor and timing functions of these brain areas as examples of dynamic sub-second prediction informed by sensory event timing. I hypothesize that in both cases, sub-second dynamics in SMA predict the progress of a temporal process outside the brain, and direct pathway activation in basal ganglia selects temporal and sensory predictions for the upcoming interval -- the only difference is that in motor processes, these predictions are made manifest through motor effectors. If we can unify our understanding of beat-based timing and motor control, we can draw on the substantial motor neuroscience literature to make conceptual leaps forward in the study of predictive timing and musical rhythm.

predictive timing coverage

2 items

Seminar2

Share your knowledge

Know something about predictive timing? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how predictive timing research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.