quiescence
Latest
Adult neurogenesis in mouse hippocampus
Dr. Aixa V. Morales has been working for more than 20 years in the field of Developmental Biology and from 2005, she is the PI of the laboratory on “Molecular Control of Neurogenesis” at Cajal Institute. Along these years, she has contributed to understanding the control of neurogenesis during development, the dorsoventral specification of neural progenitors, and the temporal control of the migration of neural crest cells. More recently, her lab interest moved towards understanding modulation of adult neurogenesis. Her lab current interest is the control of quiescence, as a mechanism of long-term neural stem cell maintenance in adult niches.
State-dependent egocentric and allocentric heading representation in the monarch butterfly sun compass
For spatial orientation, heading information can be processed in two different frames of reference, a self-centered egocentric or a viewpoint allocentric frame of reference. Using the most efficient frame of reference is in particular important if an animal migrates over large distances, as it the case for the monarch butterfly (Danaus plexippus). These butterflies employ a sun compass to travel over more than 4,000 kilometers to their destination in central Mexico. We developed tetrode recordings from the heading-direction network of tethered flying monarch butterflies that were allowed to orient with respect to a sun stimulus. We show that the neurons switch their frame of reference depending on the animal’s locomotion state. In quiescence, the heading-direction cells encode a sun bearing in an egocentric reference frame, while during active flight, the heading-direction is encoded within an allocentric reference frame. By switching to an allocentric frame of reference during flight, monarch butterflies convert the sun to a global compass cue for long-distance navigation, an ideal strategy for maintaining a migratory heading.
The Role of Hippocampal Replay in Memory Consolidation
The hippocampus lies at the centre of a network of brain regions thought to support spatial and episodic memory. Place cells - the principal cell of the hippocampus, represent information about an animal’s spatial location. Yet, during rest and awake quiescence place cells spontaneously recapitulate past trajectories (‘replay’). Replay has been hypothesised to support systems consolidation – the stabilisation of new memories via maturation of complementary cortical memory traces. Indeed, in recent work we found place and grid cells, from the deep medial entorhinal cortex (dMEC, the principal cortical output region of the hippocampus), replayed coherently during rest periods. Importantly, dMEC grid cells lagged place cells by ~11ms; suggesting the coordination may reflect consolidation. Moreover, preliminary data shows that the dMEC-hippocampal coordination strengthens as an animal becomes familiar with a task and that it may be led by directionally modulated cells. Finally, on-going work, in my recently established lab, shows replay may represent the mechanism underlying the maturation of episodic/spatial memory in pre-weanling pups. Together, these results indicate replay may play a central role in ensuring the permanency of memories.
On the purpose and origin of spontaneous neural activity
Spontaneous firing, observed in many neurons, is often attributed to ion channel or network level noise. Cortical cells during slow wave sleep exhibit transitions between so called Up and Down states. In this sleep state, with limited sensory stimuli, neurons fire in the Up state. Spontaneous firing is also observed in slices of cholinergic interneurons, cerebellar Purkinje cells and even brainstem inspiratory neurons. In such in vitro preparations, where the functional relevance is long lost, neurons continue to display a rich repertoire of firing properties. It is perplexing that these neurons, instead of saving their energy during information downtime and functional irrelevance, are eager to fire. We propose that spontaneous firing is not a chance event but instead, a vital activity for the well-being of a neuron. We postulate that neurons, in anticipation of synaptic inputs, keep their ATP levels at maximum. As recovery from inputs requires most of the energy resources, neurons are ATP surplus and ADP scarce during synaptic quiescence. With ADP as the rate-limiting step, ATP production stalls in the mitochondria when ADP is low. This leads to toxic Reactive Oxygen Species (ROS) formation, which are known to disrupt many cellular processes. We hypothesize that spontaneous firing occurs at these conditions - as a release valve to spend energy and to restore ATP production, shielding the neuron against ROS. By linking a mitochondrial metabolism model to a conductance-based neuron model, we show that spontaneous firing depends on baseline ATP usage and on ATP-cost-per-spike. From our model, emerges a mitochondrial mediated homeostatic mechanism that provides a recipe for different firing patterns. Our findings, though mostly affecting intracellular dynamics, may have large knock-on effects on the nature of neural coding. Hitherto it has been thought that the neural code is optimised for energy minimisation, but this may be true only when neurons do not experience synaptic quiescence.
The control of stem cell quiescence in early postnatal dentate gyrus is essential for establishing long-lasting adult hippocampal neurogenesis
FENS Forum 2024
LRIG1 regulates the balance between proliferation and quiescence in glioblastoma stem cells
FENS Forum 2024
quiescence coverage
6 items