TopicNeuroscience
Content Overview
25Total items
13ePosters
12Seminars

Latest

SeminarNeuroscienceRecording

Lateral entorhinal cortex directly influences medial entorhinal cortex through synaptic connections in layer 1

Brianna Vandrey
University of Edinburgh
Oct 12, 2022

Standard models of episodic memory suggest that lateral (LEC) and medial entorhinal cortex (MEC) send independent inputs to the hippocampus, each carrying different types of information. Here, we describe a pathway by which information is integrated between LEC and MEC prior to reaching hippocampus. We demonstrate that LEC sends strong projections to MEC arising from neurons that receive neocortical inputs. Activation of LEC inputs drives excitation of hippocampal-projecting neurons in MEC layer 2, typically followed by inhibition that is accounted for by parallel activation of local inhibitory neurons. We therefore propose that local circuits in MEC may support integration of ‘what’ and ‘where’ information.

SeminarNeuroscience

Perception during visual disruptions

Grace Edwards and Lina Teichmann
National Institute of Mental Health, Laboratory of Brain and Cognition, U.S. Department of Health and Human Services.
Jun 13, 2022

Visual perception is perceived as continuous despite frequent disruptions in our visual environment. For example, internal events, such as saccadic eye-movements, and external events, such as object occlusion temporarily prevent visual information from reaching the brain. Combining evidence from these two models of visual disruption (occlusion and saccades), we will describe what information is maintained and how it is updated across the sensory interruption. Lina Teichmann will focus on dynamic occlusion and demonstrate how object motion is processed through perceptual gaps. Grace Edwards will then describe what pre-saccadic information is maintained across a saccade and how it interacts with post-saccadic processing in retinotopically relevant areas of the early visual cortex. Both occlusion and saccades provide a window into how the brain bridges perceptual disruptions. Our evidence thus far suggests a role for extrapolation, integration, and potentially suppression in both models. Combining evidence from these typically separate fields enables us to determine if there is a set of mechanisms which support visual processing during visual disruptions in general.

SeminarNeuroscienceRecording

Time as a continuous dimension in natural and artificial networks

Marc Howard
Boston University
May 4, 2022

Neural representations of time are central to our understanding of the world around us. I review cognitive, neurophysiological and theoretical work that converges on three simple ideas. First, the time of past events is remembered via populations of neurons with a continuum of functional time constants. Second, these time constants evenly tile the log time axis. This results in a neural Weber-Fechner scale for time which can support behavioral Weber-Fechner laws and characteristic behavioral effects in memory experiments. Third, these populations appear as dual pairs---one type of population contains cells that change firing rate monotonically over time and a second type of population that has circumscribed temporal receptive fields. These ideas can be used to build artificial neural networks that have novel properties. Of particular interest, a convolutional neural network built using these principles can generalize to arbitrary rescaling of its inputs. That is, after learning to perform a classification task on a time series presented at one speed, it successfully classifies stimuli presented slowed down or sped up. This result illustrates the point that this confluence of ideas originating in cognitive psychology and measured in the mammalian brain could have wide-reaching impacts on AI research.

SeminarNeuroscienceRecording

Cortex-dependent corrections as the mouse tongue reaches for and misses targets

Brendan Ito & Teja Bollu
Cornell University, USA & Salk Institute, USA
Apr 20, 2022

Brendan Ito (Cornell University, USA) and Teja Bollu (Salk Institute, USA) share unique insights into rapid online motor corrections during mouse licking, analogous to primate goal-oriented reaching. Techniques covered include large-scale single unit recording during behaviour with optogenetics, and a deep-learning-based neural network to resolve 3D tongue kinematics during licking.

SeminarNeuroscience

Hearing in an acoustically varied world

Kerry Walker
University of Oxford
Jan 25, 2022

In order for animals to thrive in their complex environments, their sensory systems must form representations of objects that are invariant to changes in some dimensions of their physical cues. For example, we can recognize a friend’s speech in a forest, a small office, and a cathedral, even though the sound reaching our ears will be very different in these three environments. I will discuss our recent experiments into how neurons in auditory cortex can form stable representations of sounds in this acoustically varied world. We began by using a normative computational model of hearing to examine how the brain may recognize a sound source across rooms with different levels of reverberation. The model predicted that reverberations can be removed from the original sound by delaying the inhibitory component of spectrotemporal receptive fields in the presence of stronger reverberation. Our electrophysiological recordings then confirmed that neurons in ferret auditory cortex apply this algorithm to adapt to different room sizes. Our results demonstrate that this neural process is dynamic and adaptive. These studies provide new insights into how we can recognize auditory objects even in highly reverberant environments, and direct further research questions about how reverb adaptation is implemented in the cortical circuit.

SeminarNeuroscienceRecording

The GluN2A Subunit of the NMDA Receptor and Parvalbumin Interneurons: A Possible Role in Interneuron Development

Steve Traynelis & Chad Camp
Emory University School of Medicine
Jan 19, 2022

N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions. The GluN2A subunit, encoded by the GRIN2A gene, is expressed by both excitatory and inhibitory neurons, with well described roles in pyramidal cells. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive (PV) GABAergic interneuron function in hippocampus. Grin2a knockout mice have 33% more PV cells in CA1 compared to wild type but similar cholecystokinin-positive cell density. Immunohistochemistry and electrophysiological recordings show that excess PV cells do eventually incorporate into the hippocampal network and participate in phasic inhibition. Although the morphology of Grin2a knockout PV cells is unaffected, excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) PV cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these measures are corrected in adulthood, reaching wild type levels, suggesting a potential delay of electrophysiological maturation. The circuit and behavioral implications of this age-dependent PV interneuron malfunction are unknown. However, neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants generate an epileptic phenotypes.

SeminarNeuroscience

Scaffolding up from Social Interactions: A proposal of how social interactions might shape learning across development

Sarah Gerson
Cardiff University
Dec 9, 2021

Social learning and analogical reasoning both provide exponential opportunities for learning. These skills have largely been studied independently, but my future research asks how combining skills across previously independent domains could add up to more than the sum of their parts. Analogical reasoning allows individuals to transfer learning between contexts and opens up infinite opportunities for innovation and knowledge creation. Its origins and development, so far, have largely been studied in purely cognitive domains. Constraining analogical development to non-social domains may mistakenly lead researchers to overlook its early roots and limit ideas about its potential scope. Building a bridge between social learning and analogy could facilitate identification of the origins of analogical reasoning and broaden its far-reaching potential. In this talk, I propose that the early emergence of social learning, its saliency, and its meaningful context for young children provides a springboard for learning. In addition to providing a strong foundation for early analogical reasoning, the social domain provides an avenue for scaling up analogies in order to learn to learn from others via increasingly complex and broad routes.

SeminarNeuroscienceRecording

NMC4 Short Talk: What can deep reinforcement learning tell us about human motor learning and vice-versa ?

Michele Garibbo
University of Bristol
Dec 1, 2021

In the deep reinforcement learning (RL) community, motor control problems are usually approached from a reward-based learning perspective. However, humans are often believed to learn motor control through directed error-based learning. Within this learning setting, the control system is assumed to have access to exact error signals and their gradients with respect to the control signal. This is unlike reward-based learning, in which errors are assumed to be unsigned, encoding relative successes and failures. Here, we try to understand the relation between these two approaches, reward- and error- based learning, and ballistic arm reaches. To do so, we test canonical (deep) RL algorithms on a well-known sensorimotor perturbation in neuroscience: mirror-reversal of visual feedback during arm reaching. This test leads us to propose a potentially novel RL algorithm, denoted as model-based deterministic policy gradient (MB-DPG). This RL algorithm draws inspiration from error-based learning to qualitatively reproduce human reaching performance under mirror-reversal. Next, we show MB-DPG outperforms the other canonical (deep) RL algorithms on a single- and a multi- target ballistic reaching task, based on a biomechanical model of the human arm. Finally, we propose MB-DPG may provide an efficient computational framework to help explain error-based learning in neuroscience.

SeminarNeuroscienceRecording

Neural Population Dynamics for Skilled Motor Control

Britton Sauerbrei
Case Western Reserve University School of Medicine
Nov 5, 2021

The ability to reach, grasp, and manipulate objects is a remarkable expression of motor skill, and the loss of this ability in injury, stroke, or disease can be devastating. These behaviors are controlled by the coordinated activity of tens of millions of neurons distributed across many CNS regions, including the primary motor cortex. While many studies have characterized the activity of single cortical neurons during reaching, the principles governing the dynamics of large, distributed neural populations remain largely unknown. Recent work in primates has suggested that during the execution of reaching, motor cortex may autonomously generate the neural pattern controlling the movement, much like the spinal central pattern generator for locomotion. In this seminar, I will describe recent work that tests this hypothesis using large-scale neural recording, high-resolution behavioral measurements, dynamical systems approaches to data analysis, and optogenetic perturbations in mice. We find, by contrast, that motor cortex requires strong, continuous, and time-varying thalamic input to generate the neural pattern driving reaching. In a second line of work, we demonstrate that the cortico-cerebellar loop is not critical for driving the arm towards the target, but instead fine-tunes movement parameters to enable precise and accurate behavior. Finally, I will describe my future plans to apply these experimental and analytical approaches to the adaptive control of locomotion in complex environments.

SeminarNeuroscience

Untitled Seminar

Leah Krubitzer
University of California, Davis
May 6, 2021

Leah Krubitzer is a Distinguished Professor in the Department of Psychology at the University of California, Davis. Her graduate work focused on the evolution of visual cortex in primates, and she extended her research in Australia to include monotremes and marsupials. She has worked on the brains of over 45 different mammals. Her current research focuses on the impact of early experience and how culture impacts brain development. She also examines the evolution of sensory motor networks involved in manual dexterity, reaching and grasping in mammals. She received a MacArthur award for her work on evolution.

SeminarNeuroscience

Life of Pain and Pleasure

Irene Tracey
University of Oxford
Mar 10, 2021

The ability to experience pain is old in evolutionary terms. It is an experience shared across species. Acute pain is the body’s alarm system, and as such it is a good thing. Pain that persists beyond normal tissue healing time (3-4 months) is defined as chronic – it is the system gone wrong and it is not a good thing. Chronic pain has recently been classified as both a symptom and disease in its own right. It is one of the largest medical health problems worldwide with one in five adults diagnosed with the condition. The brain is key to the experience of pain and pain relief. This is the place where pain emerges as a perception. So, relating specific brain measures using advanced neuroimaging to the change patients describe in their pain perception induced by peripheral or central sensitization (i.e. amplification), psychological or pharmacological mechanisms has tremendous value. Identifying where amplification or attenuation processes occur along the journey from injury to the brain (i.e. peripheral nerves, spinal cord, brainstem and brain) for an individual and relating these neural mechanisms to specific pain experiences, measures of pain relief, persistence of pain states, degree of injury and the subject's underlying genetics, has neuroscientific and potential diagnostic relevance. This is what neuroimaging has afforded – a better understanding and explanation of why someone’s pain is the way it is. We can go ‘behind the scenes’ of the subjective report to find out what key changes and mechanisms make up an individual’s particular pain experience. A key area of development has been pharmacological imaging where objective evidence of drugs reaching the target and working can be obtained. We even now understand the mechanisms of placebo analgesia – a powerful phenomenon known about for millennia. More recently, researchers have been investigating through brain imaging whether there is a pre-disposing vulnerability in brain networks towards developing chronic pain. So, advanced neuroimaging studies can powerfully aid explanation of a subject’s multidimensional pain experience, pain relief (analgesia) and even what makes them vulnerable to developing chronic pain. The application of this goes beyond the clinic and has relevance in courts of law, and other areas of society, such as in veterinary care. Relatively far less work has been directed at understanding what changes in the brain occur during altered states of consciousness induced either endogenously (e.g. sleep) or exogenously (e.g. anaesthesia). However, that situation is changing rapidly. Our recent multimodal neuroimaging work explores how anaesthetic agents produce altered states of consciousness such that perceptual experiences of pain and awareness are degraded. This is bringing us fascinating insights into the complex phenomenon of anaesthesia, consciousness and even the concept of self-hood. These topics will be discussed in my talk alongside my ‘side-story’ of life as a scientist combining academic leadership roles with doing science and raising a family.

SeminarNeuroscience

Gene Therapy for Neurodegeneration

Ronald G. Crystal
Cornell Research
Feb 1, 2021

One of the major challenges in developing therapeutics for the neurodegenerative disorders is the blood-brain barrier, limiting the availability of systemically administered therapies such as recombinant proteins or monoclonal antibodies from reaching the brain. Direct central nervous system (CNS) gene therapy using adeno-associated virus vectors expressing a therapeutic protein, monoclonal antibody or inhibiting RNA-coding sequences has two characteristics ideal for therapy of neurodegenerative disorders: circumventing the blood-brain barrier by directly expressing the therapy in the brain and the ability to provide persistent therapy with only a single administration. There are several critical parameters relevant to successful CNS gene therapy, including choice of vector, design of the gene to be expressed, delivery/route of administration, dose and anti-vector immune responses. The presentation will focus on these issues, the current status of clinical trials of gene therapy for neurodegeneration and specific challenges that will need to be overcome to ensure the success of these therapies.

ePosterNeuroscience

Different faces of neurons expressing dopamine receptors in motor cortex – their laminar distribution, electrophysiological properties and role in skilled forelimb reaching

Sylwia Drabik, Anna Gugula, Aleksandra Trenk, Martyna Gorkowska, Grzegorz Kreiner, Jan Rodriguez Parkitna, Anna Blasiak, Przemysław E. Cieslak
ePosterNeuroscience

A computational model of cortico-basal ganglia circuits for deciding between reaching actions

Poune Mirzazadeh, David Thura, Andrea Green, Paul Cisek

COSYNE 2025

ePosterNeuroscience

Linking genotypic variation to neural dynamics during dexterous reaching

Reza Asri, Stefan Lemke, Jian-Zhong Guo, Juan A. Gallego, Adam H Hantman, Matthew G. Perich

COSYNE 2025

ePosterNeuroscience

Motor cortical dynamics during reaching connect posture-specific attractors

Mehrdad Kashefi, Jonathan Michaels, Jorn Diedrichsen, Andrew Pruszynski

COSYNE 2025

ePosterNeuroscience

Sensory expectations shape neural population dynamics during reaching

Jonathan A Michaels, Mehrdad Kashefi, Jack Zheng, Olivier Codol, Jeffrey Weiler, Rhonda Kersten, Paul L. Gribble, Jorn Diedrichsen, Andrew Pruszynski

COSYNE 2025

ePosterNeuroscience

Cell type-specific visual information routing via the Superior Colliculus is indispensable for goal-directed forelimb reaching movements

Guillem Vicente-Ortiz, Pierre-Arthur Suray, Aya Takeoka
ePosterNeuroscience

Impact of gaining or losing on the vigor of arm reaching movements during decision-making in non-human primates

Milesa Simic, Hugues Orignac, Tho Haï Nguyen, Thomas Boraud, Marc Deffains
ePosterNeuroscience

Modular representation of reaching endpoints in mouse motor cortex

Gregorio L. Galinanes, Daniel Huber
ePosterNeuroscience

Neuronal Dynamics in the Cerebellum During Reaching

Stefano Bettani
ePosterNeuroscience

Travelling waves in the frontal lobe of primates during a countermanding reaching task

Vasiliki Bougou, Giampiero Bardella, Franco Giarrocco, Emiliano Brunamonti, Michaël Vanhoyland, Alexander Bertrand, Pierpaolo Pani, Peter Janssen, Tom Theys, Stefano Ferraina
ePosterNeuroscience

Dopamine-acetylcholine interplay and neural activity motifs in the striatum: Insights from a mouse delayed-go reaching task

Teris, Wing Kin Tam, Rasha Elghaba, Kouichi Nakamura, Julien Carponcy, Guy Yona, Peter J. Magill

FENS Forum 2024

ePosterNeuroscience

Functional organization of the cognitive map for naturalistic reaching behavior in the motor cortex

Noa Shmueli, Arseny Finkelstein

FENS Forum 2024

ePosterNeuroscience

Motor neuroprosthetic control by Wistar rats in a one-dimensional two-target reaching task

Syed Muhammad Talha Zaidi, Hasan Berke Bilki, Halise Erten, Samet Kocatürk, Tunçer Baykaş, Mehmet Kocatürk

FENS Forum 2024

reaching coverage

25 items

ePoster13
Seminar12

Share your knowledge

Know something about reaching? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how reaching research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.