← Back

Retina

Topic spotlight
TopicNeuro

retina

Discover seminars, jobs, and research tagged with retina across Neuro.
50 curated items50 Seminars
Updated 3 months ago
50 items · retina

Latest

50 results
SeminarNeuroscienceRecording

Go with the visual flow: circuit mechanisms for gaze control during locomotion

Eugenia Chiappe
Champalimaud Foundation
Sep 12, 2025
SeminarNeuroscienceRecording

Seeing a changing world through the eyes of coral fishes

Fabio Cortesi
Queensland University
Jun 26, 2025
SeminarNeuroscienceRecording

Restoring Sight to the Blind: Effects of Structural and Functional Plasticity

Noelle Stiles
Rutgers University
May 22, 2025

Visual restoration after decades of blindness is now becoming possible by means of retinal and cortical prostheses, as well as emerging stem cell and gene therapeutic approaches. After restoring visual perception, however, a key question remains. Are there optimal means and methods for retraining the visual cortex to process visual inputs, and for learning or relearning to “see”? Up to this point, it has been largely assumed that if the sensory loss is visual, then the rehabilitation focus should also be primarily visual. However, the other senses play a key role in visual rehabilitation due to the plastic repurposing of visual cortex during blindness by audition and somatosensation, and also to the reintegration of restored vision with the other senses. I will present multisensory neuroimaging results, cortical thickness changes, as well as behavioral outcomes for patients with Retinitis Pigmentosa (RP), which causes blindness by destroying photoreceptors in the retina. These patients have had their vision partially restored by the implantation of a retinal prosthesis, which electrically stimulates still viable retinal ganglion cells in the eye. Our multisensory and structural neuroimaging and behavioral results suggest a new, holistic concept of visual rehabilitation that leverages rather than neglects audition, somatosensation, and other sensory modalities.

SeminarNeuroscience

Retinal input integration in excitatory and inhibitory neurons in the mouse superior colliculus in vivo

Prof. Jens Kremkow
Otto von Guericke University Magdeburg
Apr 9, 2025
SeminarNeuroscienceRecording

An inconvenient truth: pathophysiological remodeling of the inner retina in photoreceptor degeneration

Michael Telias
University of Rochester
Apr 8, 2025

Photoreceptor loss is the primary cause behind vision impairment and blindness in diseases such as retinitis pigmentosa and age-related macular degeneration. However, the death of rods and cones allows retinoids to permeate the inner retina, causing retinal ganglion cells to become spontaneously hyperactive, severely reducing the signal-to-noise ratio, and creating interference in the communication between the surviving retina and the brain. Treatments aimed at blocking or reducing hyperactivity improve vision initiated from surviving photoreceptors and could enhance the signal fidelity generated by vision restoration methodologies.

SeminarNeuroscienceRecording

Retinal Photoreceptor Diversity Across Mammals

Leo Peichl
Goethe University Frankfurt
Jun 3, 2024
SeminarNeuroscienceRecording

Inhibition in the retina

Anna Vlasits
University of Illinois Chicago
Apr 29, 2024
SeminarNeuroscienceRecording

Molecular Characterization of Retinal Cell Types: Insights into Evolutionary Origins and Regional Specializations

Yirong Peng
UCLA Stein Eye Institute
Mar 4, 2024
SeminarNeuroscienceRecording

Reimagining the neuron as a controller: A novel model for Neuroscience and AI

Dmitri 'Mitya' Chklovskii
Flatiron Institute, Center for Computational Neuroscience
Feb 5, 2024

We build upon and expand the efficient coding and predictive information models of neurons, presenting a novel perspective that neurons not only predict but also actively influence their future inputs through their outputs. We introduce the concept of neurons as feedback controllers of their environments, a role traditionally considered computationally demanding, particularly when the dynamical system characterizing the environment is unknown. By harnessing a novel data-driven control framework, we illustrate the feasibility of biological neurons functioning as effective feedback controllers. This innovative approach enables us to coherently explain various experimental findings that previously seemed unrelated. Our research has profound implications, potentially revolutionizing the modeling of neuronal circuits and paving the way for the creation of alternative, biologically inspired artificial neural networks.

SeminarNeuroscienceRecording

Incorporating visual evidence and counter-evidence to estimate self-movement

Damon Clark
Yale University
Jan 22, 2024
SeminarNeuroscience

Sensory Consequences of Visual Actions

Martin Rolfs
Humboldt-Universität zu Berlin
Dec 8, 2023

We use rapid eye, head, and body movements to extract information from a new part of the visual scene upon each new gaze fixation. But the consequences of such visual actions go beyond their intended sensory outcomes. On the one hand, intrinsic consequences accompany movement preparation as covert internal processes (e.g., predictive changes in the deployment of visual attention). On the other hand, visual actions have incidental consequences, side effects of moving the sensory surface to its intended goal (e.g., global motion of the retinal image during saccades). In this talk, I will present studies in which we investigated intrinsic and incidental sensory consequences of visual actions and their sensorimotor functions. Our results provide insights into continuously interacting top-down and bottom-up sensory processes, and they reify the necessity to study perception in connection to motor behavior that shapes its fundamental processes.

SeminarNeuroscienceRecording

Visual Monitoring of Visual Appearance as a Feedback System in Dynamic Camouflage

Lorian E. Schweikert
University of North Carolina Wilmington
Nov 13, 2023
SeminarNeuroscienceRecording

How fly neurons compute the direction of visual motion

Axel Borst
Max-Planck-Institute for Biological Intelligence
Oct 9, 2023

Detecting the direction of image motion is important for visual navigation, predator avoidance and prey capture, and thus essential for the survival of all animals that have eyes. However, the direction of motion is not explicitly represented at the level of the photoreceptors: it rather needs to be computed by subsequent neural circuits, involving a comparison of the signals from neighboring photoreceptors over time. The exact nature of this process represents a classic example of neural computation and has been a longstanding question in the field. Much progress has been made in recent years in the fruit fly Drosophila melanogaster by genetically targeting individual neuron types to block, activate or record from them. Our results obtained this way demonstrate that the local direction of motion is computed in two parallel ON and OFF pathways. Within each pathway, a retinotopic array of four direction-selective T4 (ON) and T5 (OFF) cells represents the four Cartesian components of local motion vectors (leftward, rightward, upward, downward). Since none of the presynaptic neurons is directionally selective, direction selectivity first emerges within T4 and T5 cells. Our present research focuses on the cellular and biophysical mechanisms by which the direction of image motion is computed in these neurons.

SeminarNeuroscienceRecording

Comparative transcriptomics of retinal cell types

Karthik Shekhar
University of California, Berkeley
Jul 24, 2023
SeminarNeuroscienceRecording

Light-driven dopamine release in the adult and developing retina

Morven Cameron
Western Sydney University
Jun 26, 2023
SeminarNeuroscience

Restoring function in advanced disease with photoreceptor cell replacement therapy

Rachael Pearson
King's College London
Jun 13, 2023
SeminarNeuroscienceRecording

Human and Zebrafish retinal circuits: similarities in day and night

Takeshi Yoshimatsu
University of Washington, St. Louis
Jun 12, 2023
SeminarNeuroscienceRecording

How what you do shapes what you see

Stephanie Palmer
University of Chicago
May 29, 2023
SeminarNeuroscience

Seeing slowly - how inner retinal photoreceptors support vision and circadian rhythms in mice and humans

Robert Lucas
University of Manchester, UK
May 25, 2023
SeminarNeuroscienceRecording

Neural circuits for vision in the natural world

Cris Niell
University of Oregon
May 22, 2023
SeminarNeuroscienceRecording

Started at 09 .15 - A WHOLE DAY symposium celebrating the work of Mike Land

Animal Vision - The work of Mike Land
University of Sussex
Apr 27, 2023

Note: British 16.15 is the finishing time

SeminarNeuroscienceRecording

Routing and modulation of retinal input to circuits underlying aversive behavior

Katja Reinhard
SISSA Trieste
Apr 24, 2023
SeminarNeuroscienceRecording

The smart image compression algorithm in the retina: a theoretical study of recoding inputs in neural circuits

Gabrielle Gutierrez
Columbia University, New York
Apr 5, 2023

Computation in neural circuits relies on a common set of motifs, including divergence of common inputs to parallel pathways, convergence of multiple inputs to a single neuron, and nonlinearities that select some signals over others. Convergence and circuit nonlinearities, considered individually, can lead to a loss of information about the inputs. Past work has detailed how to optimize nonlinearities and circuit weights to maximize information, but we show that selective nonlinearities, acting together with divergent and convergent circuit structure, can improve information transmission over a purely linear circuit despite the suboptimality of these components individually. These nonlinearities recode the inputs in a manner that preserves the variance among converged inputs. Our results suggest that neural circuits may be doing better than expected without finely tuned weights.

SeminarNeuroscienceRecording

Retinal and brain circuits underlying the effects of light on behavior

Hattar Samer
National Institutes of Health
Mar 21, 2023
SeminarNeuroscienceRecording

Visual circuits for threat anticipation

Tiffany Schmidt
Northwestern University
Mar 20, 2023
SeminarNeuroscience

Learning to see stuff

Roland W. Fleming
Giessen University
Mar 13, 2023

Humans are very good at visually recognizing materials and inferring their properties. Without touching surfaces, we can usually tell what they would feel like, and we enjoy vivid visual intuitions about how they typically behave. This is impressive because the retinal image that the visual system receives as input is the result of complex interactions between many physical processes. Somehow the brain has to disentangle these different factors. I will present some recent work in which we show that an unsupervised neural network trained on images of surfaces spontaneously learns to disentangle reflectance, lighting and shape. However, the disentanglement is not perfect, and we find that as a result the network not only predicts the broad successes of human gloss perception, but also the specific pattern of errors that humans exhibit on an image-by-image basis. I will argue this has important implications for thinking about appearance and vision more broadly.

SeminarNeuroscienceRecording

Interplay between circuits that mediate spontaneous retinal waves and early light responses during retinal development

Marla Feller
University of California, Berkeley
Feb 13, 2023
SeminarNeuroscienceRecording

Vision for Predation

Daniel Kerschensteiner
Washington University, St Louis
Jan 16, 2023
SeminarNeuroscienceRecording

Active vision in Drosophila

Lisa Fenk
Max Planck Institute for Biological Intelligence, Munich
Dec 12, 2022
SeminarNeuroscienceRecording

Melanopsin contributions to vision in mice and man

Rob Lucas
University of Manchester
Nov 21, 2022
SeminarNeuroscienceRecording

Context-dependent selectivity to natural scenes in the retina

Olivier Marre
Institute de la vision, Paris
Nov 7, 2022
SeminarNeuroscienceRecording

Regional variation of photoreceptor and circuit function in the primate retina

Raunak Sinha
University of Wisconsin-Madison
Oct 24, 2022
SeminarNeuroscience

Development and evolution of neuronal connectivity

Alain Chédotal
Vision Institute, Paris, France
Sep 28, 2022

In most animal species including humans, commissural axons connect neurons on the left and right side of the nervous system. In humans, abnormal axon midline crossing during development causes a whole range of neurological disorders ranging from congenital mirror movements, horizontal gaze palsy, scoliosis or binocular vision deficits. The mechanisms which guide axons across the CNS midline were thought to be evolutionary conserved but our recent results suggesting that they differ across vertebrates.  I will discuss the evolution of visual projection laterality during vertebrate evolution.  In most vertebrates, camera-style eyes contain retinal ganglion cell (RGC) neurons projecting to visual centers on both sides of the brain. However, in fish, RGCs are thought to only innervate the contralateral side. Using 3D imaging and tissue clearing we found that bilateral visual projections exist in non-teleost fishes. We also found that the developmental program specifying visual system laterality differs between fishes and mammals. We are currently using various strategies to discover genes controlling the development of visual projections. I will also present ongoing work using 3D imaging techniques to study the development of the visual system in human embryo.

SeminarNeuroscienceRecording

Seeing the world through moving photoreceptors - binocular photomechanical microsaccades give fruit fly hyperacute 3D-vision

Mikko Juusola
University of Sheffield
Aug 1, 2022

To move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors.

SeminarNeuroscienceRecording

A model of colour appearance based on efficient coding of natural images

Jolyon Troscianko
University of Exeter
Jul 18, 2022

An object’s colour, brightness and pattern are all influenced by its surroundings, and a number of visual phenomena and “illusions” have been discovered that highlight these often dramatic effects. Explanations for these phenomena range from low-level neural mechanisms to high-level processes that incorporate contextual information or prior knowledge. Importantly, few of these phenomena can currently be accounted for when measuring an object’s perceived colour. Here we ask to what extent colour appearance is predicted by a model based on the principle of coding efficiency. The model assumes that the image is encoded by noisy spatio-chromatic filters at one octave separations, which are either circularly symmetrical or oriented. Each spatial band’s lower threshold is set by the contrast sensitivity function, and the dynamic range of the band is a fixed multiple of this threshold, above which the response saturates. Filter outputs are then reweighted to give equal power in each channel for natural images. We demonstrate that the model fits human behavioural performance in psychophysics experiments, and also primate retinal ganglion responses. Next we systematically test the model’s ability to qualitatively predict over 35 brightness and colour phenomena, with almost complete success. This implies that contrary to high-level processing explanations, much of colour appearance is potentially attributable to simple mechanisms evolved for efficient coding of natural images, and is a basis for modelling the vision of humans and other animals.

SeminarNeuroscience

Color vision circuits for primate intrinsically photosensitive retinal ganglion cells

Sara S. Patterson
University of Rochester (USA)
Jul 7, 2022

The rising and setting of the sun is accompanied by changes in both the irradiance and the spectral distribution of the sky. Since the discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs) 20 years ago, considerable progress has been made in understanding melanopsin's contributions to encoding irradiance. Much less is known about the cone inputs to ipRGCs and how they could encode changes in the color of the sky. I will summarize our recent connectomic investigation into the cone-opponent inputs to primate ipRGCs and the implications of this work on our understanding of circadian photoentrainment and the evolution of color vision.

SeminarNeuroscience

On the contributions of retinal direction selectivity to cortical motion processing in mice

Rune Nguyen Rasmussen
University of Copenhagen
Jun 10, 2022

Cells preferentially responding to visual motion in a particular direction are said to be direction-selective, and these were first identified in the primary visual cortex. Since then, direction-selective responses have been observed in the retina of several species, including mice, indicating motion analysis begins at the earliest stage of the visual hierarchy. Yet little is known about how retinal direction selectivity contributes to motion processing in the visual cortex. In this talk, I will present our experimental efforts to narrow this gap in our knowledge. To this end, we used genetic approaches to disrupt direction selectivity in the retina and mapped neuronal responses to visual motion in the visual cortex of mice using intrinsic signal optical imaging and two-photon calcium imaging. In essence, our work demonstrates that direction selectivity computed at the level of the retina causally serves to establish specialized motion responses in distinct areas of the mouse visual cortex. This finding thus compels us to revisit our notions of how the brain builds complex visual representations and underscores the importance of the processing performed in the periphery of sensory systems.

SeminarNeuroscience

The evolution of computation in the brain: Insights from studying the retina

Tom Baden
University of Sussex (UK)
Jun 2, 2022

The retina is probably the most accessible part of the vertebrate central nervous system. Its computational logic can be interrogated in a dish, from patterns of lights as the natural input, to spike trains on the optic nerve as the natural output. Consequently, retinal circuits include some of the best understood computational networks in neuroscience. The retina is also ancient, and central to the emergence of neurally complex life on our planet. Alongside new locomotor strategies, the parallel evolution of image forming vision in vertebrate and invertebrate lineages is thought to have driven speciation during the Cambrian. This early investment in sophisticated vision is evident in the fossil record and from comparing the retina’s structural make up in extant species. Animals as diverse as eagles and lampreys share the same retinal make up of five classes of neurons, arranged into three nuclear layers flanking two synaptic layers. Some retina neuron types can be linked across the entire vertebrate tree of life. And yet, the functions that homologous neurons serve in different species, and the circuits that they innervate to do so, are often distinct to acknowledge the vast differences in species-specific visuo-behavioural demands. In the lab, we aim to leverage the vertebrate retina as a discovery platform for understanding the evolution of computation in the nervous system. Working on zebrafish alongside birds, frogs and sharks, we ask: How do synapses, neurons and networks enable ‘function’, and how can they rearrange to meet new sensory and behavioural demands on evolutionary timescales?

SeminarNeuroscienceRecording

What the fly’s eye tells the fly’s brain…and beyond

Gwyneth Card
Janelia Research Campus, HHMI
Jun 1, 2022

Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.

SeminarNeuroscienceRecording

The Standard Model of the Retina

Markus Meister
Caltech
May 25, 2022

The science of the retina has reached an interesting stage of completion. There exists now a consensus standard model of this neural system - at least in the minds of many researchers - that serves as a baseline against which to evaluate new claims. The standard model links phenomena from molecular biophysics, cell biology, neuroanatomy, synaptic physiology, circuit function, and visual psychophysics. It is further supported by a normative theory explaining what the purpose is of processing visual information this way. Most new reports of retinal phenomena fit squarely within the standard model, and major revisions seem increasingly unlikely. Given that our understanding of other brain circuits with comparable complexity is much more rudimentary, it is worth considering an example of what success looks like. In this talk I will summarize what I think are the ingredients that led to this mature understanding of the retina. Equally important, a number of practices and concepts that are currently en vogue in neuroscience were not needed or indeed counterproductive. I look forward to debating how these lessons might extend to other areas of brain research.

SeminarNeuroscience

How do ipRGCs work? Evidence from the pupil light reflex

Pablo Alejandro Barrionuevo
National Scientific and Technical Research Council/CONICET (Argentina)
May 25, 2022

Since the discovery of the intrinsically photosensitive retinal ganglion cells (ipRGCs) – just two decades ago – substantial work has been carried out trying to understand their functioning. In this seminar, I’ll focus on pupillometry studies that have provided key clues about ipRGC behavior. Specifically, the interaction between the intrinsic response, rods, and cones will be discussed.

SeminarNeuroscience

Light-induced moderations in vitality and sleep in the field

Karin C. H. J. Smolders
Eindhoven University of Technology
May 19, 2022

Retinal light exposure is modulated by our behavior, and light exposure patterns show strong variations within and between persons. Yet, most laboratory studies investigated influences of constant lighting settings on human daytime functioning and sleep. In this presentation, I will discuss a series of studies investigating light-induced moderations in sleepiness, vitality and sleep, with a strong focus on the temporal dynamics in these effects, and the bi-directional relation between persons' light profiles and their behavior.

SeminarNeuroscienceRecording

A draft connectome for ganglion cell types of the mouse retina

David Berson
Brown University
May 16, 2022

The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.

SeminarNeuroscienceRecording

Why do some animals have more than two eyes?

Lauren Sumner-Rooney
Leibniz Institute for Research on Evolution and Biodiversity
May 9, 2022

The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.

retina coverage

50 items

Seminar50
Domain spotlight

Explore how retina research is advancing inside Neuro.

Visit domain