retinal processing
Latest
On the contributions of retinal direction selectivity to cortical motion processing in mice
Cells preferentially responding to visual motion in a particular direction are said to be direction-selective, and these were first identified in the primary visual cortex. Since then, direction-selective responses have been observed in the retina of several species, including mice, indicating motion analysis begins at the earliest stage of the visual hierarchy. Yet little is known about how retinal direction selectivity contributes to motion processing in the visual cortex. In this talk, I will present our experimental efforts to narrow this gap in our knowledge. To this end, we used genetic approaches to disrupt direction selectivity in the retina and mapped neuronal responses to visual motion in the visual cortex of mice using intrinsic signal optical imaging and two-photon calcium imaging. In essence, our work demonstrates that direction selectivity computed at the level of the retina causally serves to establish specialized motion responses in distinct areas of the mouse visual cortex. This finding thus compels us to revisit our notions of how the brain builds complex visual representations and underscores the importance of the processing performed in the periphery of sensory systems.
A perturbative approach to retinal processing
What the eye tells the brain: Visual feature extraction in the mouse retina
Visual processing begins in the retina: within only two synaptic layers, multiple parallel feature channels emerge, which relay highly processed visual information to different parts of the brain. To functionally characterize these feature channels we perform calcium and glutamate population activity recordings at different levels of the mouse retina. This allows following the complete visual signal across consecutive processing stages in a systematic way. In my talk, I will summarize our recent findings on the functional diversity of retinal output channels and how they arise within the retinal network. Specifically, I will talk about the role of inhibition and cell-type specific dendritic processing in generating diverse visual channels. Then, I will focus on how color – a single visual feature – emerges across all retinal processing layers and link our results to behavioral output and the statistics of mouse natural scenes. With our approach, we hope to identify general computational principles of retinal signaling, thereby increasing our understanding of what the eye tells the brain.
retinal processing coverage
3 items