reward prediction errors
Latest
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Understanding reward-guided learning using large-scale datasets
Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.
Richly structured reward predictions in dopaminergic learning circuits
Theories from reinforcement learning have been highly influential for interpreting neural activity in the biological circuits critical for animal and human learning. Central among these is the identification of phasic activity in dopamine neurons as a reward prediction error signal that drives learning in basal ganglia and prefrontal circuits. However, recent findings suggest that dopaminergic prediction error signals have access to complex, structured reward predictions and are sensitive to more properties of outcomes than learning theories with simple scalar value predictions might suggest. Here, I will present recent work in which we probed the identity-specific structure of reward prediction errors in an odor-guided choice task and found evidence for multiple predictive “threads” that segregate reward predictions, and reward prediction errors, according to the specific sensory features of anticipated outcomes. Our results point to an expanded class of neural reinforcement learning algorithms in which biological agents learn rich associative structure from their environment and leverage it to build reward predictions that include information about the specific, and perhaps idiosyncratic, features of available outcomes, using these to guide behavior in even quite simple reward learning tasks.
Learning static and dynamic mappings with local self-supervised plasticity
Animals exhibit remarkable learning capabilities with little direct supervision. Likewise, self-supervised learning is an emergent paradigm in artificial intelligence, closing the performance gap to supervised learning. In the context of biology, self-supervised learning corresponds to a setting where one sense or specific stimulus may serve as a supervisory signal for another. After learning, the latter can be used to predict the former. On the implementation level, it has been demonstrated that such predictive learning can occur at the single neuron level, in compartmentalized neurons that separate and associate information from different streams. We demonstrate the power such self-supervised learning over unsupervised (Hebb-like) learning rules, which depend heavily on stimulus statistics, in two examples: First, in the context of animal navigation where predictive learning can associate internal self-motion information always available to the animal with external visual landmark information, leading to accurate path-integration in the dark. We focus on the well-characterized fly head direction system and show that our setting learns a connectivity strikingly similar to the one reported in experiments. The mature network is a quasi-continuous attractor and reproduces key experiments in which optogenetic stimulation controls the internal representation of heading, and where the network remaps to integrate with different gains. Second, we show that incorporating global gating by reward prediction errors allows the same setting to learn conditioning at the neuronal level with mixed selectivity. At its core, conditioning entails associating a neural activity pattern induced by an unconditioned stimulus (US) with the pattern arising in response to a conditioned stimulus (CS). Solving the generic problem of pattern-to-pattern associations naturally leads to emergent cognitive phenomena like blocking, overshadowing, saliency effects, extinction, interstimulus interval effects etc. Surprisingly, we find that the same network offers a reductionist mechanism for causal inference by resolving the post hoc, ergo propter hoc fallacy.
A role for dopamine in value-free learning
Recent success in training artificial agents and robots derives from a combination of direct learning of behavioral policies and indirect learning via value functions. Policy learning and value learning employ distinct algorithms that depend upon evaluation of errors in performance and reward prediction errors, respectively. In mammals, behavioral learning and the role of mesolimbic dopamine signaling have been extensively evaluated with respect to reward prediction errors; but there has been little consideration of how direct policy learning might inform our understanding. I’ll discuss our recent work on classical conditioning in naïve mice (https://www.biorxiv.org/content/10.1101/2021.05.31.446464v1) that provides multiple lines of evidence that phasic dopamine signaling regulates policy learning from performance errors in addition to its well-known roles in value learning. This work points towards new opportunities for unraveling the mechanisms of basal ganglia control over behavior under both adaptive and maladaptive learning conditions.
Generalization guided exploration
How do people learn in real-world environments where the space of possible actions can be vast or even infinite? The study of human learning has made rapid progress in past decades, from discovering the neural substrate of reward prediction errors, to building AI capable of mastering the game of Go. Yet this line of research has primarily focused on learning through repeated interactions with the same stimuli. How are humans able to rapidly adapt to novel situations and learn from such sparse examples? I propose a theory of how generalization guides human learning, by making predictions about which unobserved options are most promising to explore. Inspired by Roger Shepard’s law of generalization, I show how a Bayesian function learning model provides a mechanism for generalizing limited experiences to a wide set of novel possibilities, based on the simple principle that similar actions produce similar outcomes. This model of generalization generates predictions about the expected reward and underlying uncertainty of unexplored options, where both are vital components in how people actively explore the world. This model allows us to explain developmental differences in the explorative behavior of children, and suggests a general principle of learning across spatial, conceptual, and structured domains.
Dopamine reward prediction errors report but are not used to update choice behaviour in structured environments
reward prediction errors coverage
7 items
Share your knowledge
Know something about reward prediction errors? Help the community by contributing seminars, talks, or research.
Contribute contentExplore how reward prediction errors research is advancing inside Neuroscience.
Visit domain