TopicNeuro

sensitivity

41 Seminars24 ePosters

Latest

SeminarNeuroscience

Characterizing hormone sensitivity along the menstrual cycle and during hormonal contraceptive use

Belinda Pletzer
Paris Lodron Universität Salzburg (PLUS), Austria
Oct 17, 2024
SeminarNeuroscienceRecording

Bayesian expectation in the perception of the timing of stimulus sequences

Max De Luca
University of Birmingham
Dec 13, 2023

In the current virtual journal club Dr Di Luca will present findings from a series of psychophysical investigations where he measured sensitivity and bias in the perception of the timing of stimuli. He will present how improved detection with longer sequences and biases in reporting isochrony can be accounted for by optimal statistical predictions. Among his findings was also that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted to appear more regular. Such change depends on whether the context these sequences are presented is also regular. Dr Di Luca will present a Bayesian model for the combination of dynamically updated expectations, in the form of a priori probability, with incoming sensory information. These findings contribute to the understanding of how the brain processes temporal information to shape perceptual experiences.

SeminarNeuroscienceRecording

Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception

Ashley Schormans
BrainsCAN, Western University, Canada.
Sep 27, 2023

To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.

SeminarNeuroscienceRecording

Signatures of criticality in efficient coding networks

Shervin Safavi
Dayan lab, MPI for Biological Cybernetics
May 3, 2023

The critical brain hypothesis states that the brain can benefit from operating close to a second-order phase transition. While it has been shown that several computational aspects of sensory information processing (e.g., sensitivity to input) are optimal in this regime, it is still unclear whether these computational benefits of criticality can be leveraged by neural systems performing behaviorally relevant computations. To address this question, we investigate signatures of criticality in networks optimized to perform efficient encoding. We consider a network of leaky integrate-and-fire neurons with synaptic transmission delays and input noise. Previously, it was shown that the performance of such networks varies non-monotonically with the noise amplitude. Interestingly, we find that in the vicinity of the optimal noise level for efficient coding, the network dynamics exhibits signatures of criticality, namely, the distribution of avalanche sizes follows a power law. When the noise amplitude is too low or too high for efficient coding, the network appears either super-critical or sub-critical, respectively. This result suggests that two influential, and previously disparate theories of neural processing optimization—efficient coding, and criticality—may be intimately related

SeminarNeuroscienceRecording

Shallow networks run deep: How peripheral preprocessing facilitates odor classification

Yonatan Aljadeff
University of California, San Diego (UCSD)
Nov 9, 2022

Drosophila olfactory sensory hairs ("sensilla") typically house two olfactory receptor neurons (ORNs) which can laterally inhibit each other via electrical ("ephaptic") coupling. ORN pairing is highly stereotyped and genetically determined. Thus, olfactory signals arriving in the Antennal Lobe (AL) have been pre-processed by a fixed and shallow network at the periphery. To uncover the functional significance of this organization, we developed a nonlinear phenomenological model of asymmetrically coupled ORNs responding to odor mixture stimuli. We derived an analytical solution to the ORNs’ dynamics, which shows that the peripheral network can extract the valence of specific odor mixtures via transient amplification. Our model predicts that for efficient read-out of the amplified valence signal there must exist specific patterns of downstream connectivity that reflect the organization at the periphery. Analysis of AL→Lateral Horn (LH) fly connectomic data reveals evidence directly supporting this prediction. We further studied the effect of ephaptic coupling on olfactory processing in the AL→Mushroom Body (MB) pathway. We show that stereotyped ephaptic interactions between ORNs lead to a clustered odor representation of glomerular responses. Such clustering in the AL is an essential assumption of theoretical studies on odor recognition in the MB. Together our work shows that preprocessing of olfactory stimuli by a fixed and shallow network increases sensitivity to specific odor mixtures, and aids in the learning of novel olfactory stimuli. Work led by Palka Puri, in collaboration with Chih-Ying Su and Shiuan-Tze Wu.

SeminarNeuroscienceRecording

A model of colour appearance based on efficient coding of natural images

Jolyon Troscianko
University of Exeter
Jul 18, 2022

An object’s colour, brightness and pattern are all influenced by its surroundings, and a number of visual phenomena and “illusions” have been discovered that highlight these often dramatic effects. Explanations for these phenomena range from low-level neural mechanisms to high-level processes that incorporate contextual information or prior knowledge. Importantly, few of these phenomena can currently be accounted for when measuring an object’s perceived colour. Here we ask to what extent colour appearance is predicted by a model based on the principle of coding efficiency. The model assumes that the image is encoded by noisy spatio-chromatic filters at one octave separations, which are either circularly symmetrical or oriented. Each spatial band’s lower threshold is set by the contrast sensitivity function, and the dynamic range of the band is a fixed multiple of this threshold, above which the response saturates. Filter outputs are then reweighted to give equal power in each channel for natural images. We demonstrate that the model fits human behavioural performance in psychophysics experiments, and also primate retinal ganglion responses. Next we systematically test the model’s ability to qualitatively predict over 35 brightness and colour phenomena, with almost complete success. This implies that contrary to high-level processing explanations, much of colour appearance is potentially attributable to simple mechanisms evolved for efficient coding of natural images, and is a basis for modelling the vision of humans and other animals.

SeminarNeuroscienceRecording

Can I be bothered? Neural and computational mechanisms underlying the dynamics of effort processing (BACN Early-career Prize Lecture 2021)

Matthew Apps
Centre for Human Brain Health, School of Psychology, University of Birmingham
May 24, 2022

From a workout at the gym to helping a colleague with their work, everyday we make decisions about whether we are willing to exert effort to obtain some sort of benefit. Increases in how effortful actions and cognitive processes are perceived to be has been linked to clinically severe impairments to motivation, such as apathy and fatigue, across many neurological and psychiatric conditions. However, the vast majority of neuroscience research has focused on understanding the benefits for acting, the rewards, and not on the effort required. As a result, the computational and neural mechanisms underlying how effort is processed are poorly understood. How do we compute how effortful we perceive a task to be? How does this feed into our motivation and decisions of whether to act? How are such computations implemented in the brain? and how do they change in different environments? I will present a series of studies examining these questions using novel behavioural tasks, computational modelling, fMRI, pharmacological manipulations, and testing in a range of different populations. These studies highlight how the brain represents the costs of exerting effort, and the dynamic processes underlying how our sensitivity to effort changes as a function of our goals, traits, and socio-cognitive processes. This work provides new computational frameworks for understanding and examining impaired motivation across psychiatric and neurological conditions, as well as why all of us, sometimes, can’t be bothered.

SeminarNeuroscienceRecording

Retinal responses to natural inputs

Fred Rieke
University of Washington
Apr 18, 2022

The research in my lab focuses on sensory signal processing, particularly in cases where sensory systems perform at or near the limits imposed by physics. Photon counting in the visual system is a beautiful example. At its peak sensitivity, the performance of the visual system is limited largely by the division of light into discrete photons. This observation has several implications for phototransduction and signal processing in the retina: rod photoreceptors must transduce single photon absorptions with high fidelity, single photon signals in photoreceptors, which are only 0.03 – 0.1 mV, must be reliably transmitted to second-order cells in the retina, and absorption of a single photon by a single rod must produce a noticeable change in the pattern of action potentials sent from the eye to the brain. My approach is to combine quantitative physiological experiments and theory to understand photon counting in terms of basic biophysical mechanisms. Fortunately there is more to visual perception than counting photons. The visual system is very adept at operating over a wide range of light intensities (about 12 orders of magnitude). Over most of this range, vision is mediated by cone photoreceptors. Thus adaptation is paramount to cone vision. Again one would like to understand quantitatively how the biophysical mechanisms involved in phototransduction, synaptic transmission, and neural coding contribute to adaptation.

SeminarNeuroscienceRecording

Fantastic windows of sensitivity and where to find them

Ilona Kovacs
Péter Pázmány Catholic University
Mar 15, 2022
SeminarNeuroscienceRecording

Taming chaos in neural circuits

Rainer Engelken
Columbia University
Feb 23, 2022

Neural circuits exhibit complex activity patterns, both spontaneously and in response to external stimuli. Information encoding and learning in neural circuits depend on the ability of time-varying stimuli to control spontaneous network activity. In particular, variability arising from the sensitivity to initial conditions of recurrent cortical circuits can limit the information conveyed about the sensory input. Spiking and firing rate network models can exhibit such sensitivity to initial conditions that are reflected in their dynamic entropy rate and attractor dimensionality computed from their full Lyapunov spectrum. I will show how chaos in both spiking and rate networks depends on biophysical properties of neurons and the statistics of time-varying stimuli. In spiking networks, increasing the input rate or coupling strength aids in controlling the driven target circuit, which is reflected in both a reduced trial-to-trial variability and a decreased dynamic entropy rate. With sufficiently strong input, a transition towards complete network state control occurs. Surprisingly, this transition does not coincide with the transition from chaos to stability but occurs at even larger values of external input strength. Controllability of spiking activity is facilitated when neurons in the target circuit have a sharp spike onset, thus a high speed by which neurons launch into the action potential. I will also discuss chaos and controllability in firing-rate networks in the balanced state. For these, external control of recurrent dynamics strongly depends on correlations in the input. This phenomenon was studied with a non-stationary dynamic mean-field theory that determines how the activity statistics and the largest Lyapunov exponent depend on frequency and amplitude of the input, recurrent coupling strength, and network size. This shows that uncorrelated inputs facilitate learning in balanced networks. The results highlight the potential of Lyapunov spectrum analysis as a diagnostic for machine learning applications of recurrent networks. They are also relevant in light of recent advances in optogenetics that allow for time-dependent stimulation of a select population of neurons.

SeminarNeuroscienceRecording

Dissecting the neural circuits underlying prefrontal regulation of reward and threat responsivity in a primate

Angela Roberts
Department of Physiology, Development and Neuroscience, University of Cambridge
Feb 15, 2022

Gaining insight into the overlapping neural circuits that regulate positive and negative emotion is an important step towards understanding the heterogeneity in the aetiology of anxiety and depression and developing new treatment targets. Determining the core contributions of the functionally heterogenous prefrontal cortex to these circuits is especially illuminating given its marked dysregulation in affective disorders. This presentation will review a series of studies in a new world monkey, the common marmoset, employing pathway-specific chemogenetics, neuroimaging, neuropharmacology and behavioural and cardiovascular analysis to dissect out prefrontal involvement in the regulation of both positive and negative emotion. Highlights will include the profound shift of sensitivity away from reward and towards threat induced by localised activations within distinct regions of vmPFC, namely areas 25 and 14 as well as the opposing contributions of this region, compared to orbitofrontal and dorsolateral prefrontal cortex, in the overall responsivity to threat. Ongoing follow-up studies are identifying the distinct downstream pathways that mediate some of these effects as well as their differential sensitivity to rapidly acting anti-depressants.

SeminarNeuroscience

A novel form of retinotopy in area V2 highlights location-dependent feature selectivity in the visual system

Madineh Sedigh-Sarvestani
Max Planck Florida Institute for Neuroscience
Jan 19, 2022

Topographic maps are a prominent feature of brain organization, reflecting local and large-scale representation of the sensory surface. ​​Traditionally, such representations in early visual areas are conceived as retinotopic maps preserving ego-centric retinal spatial location while ensuring that other features of visual input are uniformly represented for every location in space. I will discuss our recent findings of a striking departure from this simple mapping in the secondary visual area (V2) of the tree shrew that is best described as a sinusoidal transformation of the visual field. This sinusoidal topography is ideal for achieving uniform coverage in an elongated area like V2 as predicted by mathematical models designed for wiring minimization, and provides a novel explanation for stripe-like patterns of intra-cortical connections and functional response properties in V2. Our findings suggest that cortical circuits flexibly implement solutions to sensory surface representation, with dramatic consequences for large-scale cortical organization. Furthermore our work challenges the framework of relatively independent encoding of location and features in the visual system, showing instead location-dependent feature sensitivity produced by specialized processing of different features in different spatial locations. In the second part of the talk, I will propose that location-dependent feature sensitivity is a fundamental organizing principle of the visual system that achieves efficient representation of positional regularities in visual input, and reflects the evolutionary selection of sensory and motor circuits to optimally represent behaviorally relevant information. The relevant papers can be found here: V2 retinotopy (Sedigh-Sarvestani et al. Neuron, 2021) Location-dependent feature sensitivity (Sedigh-Sarvestani et al. Under Review, 2022)

SeminarNeuroscience

Modulation of cochlear sensitivity during cognition: a possible function of the cortico-olivocochlear pathways

Paul Delano
University of Chile
Dec 13, 2021
SeminarNeuroscienceRecording

Opponent processing in the expanded retinal mosaic of Nymphalid butterflies

Gregor Belušič
University of Ljubljana
Dec 13, 2021

In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria, we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R–) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R–) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R– cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5–8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.

SeminarNeuroscience

Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli

Helene Schreyer
Gollisch lab, University Medical Center Göttingen, Germany
Dec 9, 2021

Vision begins in the eye, and what the “retina tells the brain” is a major interest in visual neuroscience. To deduce what the retina encodes (“tells”), computational models are essential. The most important models in the retina currently aim to understand the responses of the retinal output neurons – the ganglion cells. Typically, these models make simplifying assumptions about the neurons in the retinal network upstream of ganglion cells. One important assumption is linear spatial integration. In this talk, I first define what it means for a neuron to be spatially linear or nonlinear and how we can experimentally measure these phenomena. Next, I introduce the neurons upstream to retinal ganglion cells, with focus on bipolar cells, which are the connecting elements between the photoreceptors (input to the retinal network) and the ganglion cells (output). This pivotal position makes bipolar cells an interesting target to study the assumption of linear spatial integration, yet due to their location buried in the middle of the retina it is challenging to measure their neural activity. Here, I present bipolar cell data where I ask whether the spatial linearity holds under artificial and natural visual stimuli. Through diverse analyses and computational models, I show that bipolar cells are more complex than previously thought and that they can already act as nonlinear processing elements at the level of their somatic membrane potential. Furthermore, through pharmacology and current measurements, I illustrate that the observed spatial nonlinearity arises at the excitatory inputs to bipolar cells. In the final part of my talk, I address the functional relevance of the nonlinearities in bipolar cells through combined recordings of bipolar and ganglion cells and I show that the nonlinearities in bipolar cells provide high spatial sensitivity to downstream ganglion cells. Overall, I demonstrate that simple linear assumptions do not always apply and more complex models are needed to describe what the retina “tells” the brain.

SeminarNeuroscience

Neurocognitive mechanisms of proactive temporal attention: challenging oscillatory and cortico-centered models

Assaf Breska
Max Planck Institute for Biological Cybernetics, Tübingen
Dec 2, 2021

To survive in a rapidly dynamic world, the brain predicts the future state of the world and proactively adjusts perception, attention and action. A key to efficient interaction is to predict and prepare to not only “where” and “what” things will happen, but also to “when”. I will present studies in healthy and neurological populations that investigated the cognitive architecture and neural basis of temporal anticipation. First, influential ‘entrainment’ models suggest that anticipation in rhythmic contexts, e.g. music or biological motion, uniquely relies on alignment of attentional oscillations to external rhythms. Using computational modeling and EEG, I will show that cortical neural patterns previously associated with entrainment in fact overlap with interval timing mechanisms that are used in aperiodic contexts. Second, temporal prediction and attention have commonly been associated with cortical circuits. Studying neurological populations with subcortical degeneration, I will present data that point to a double dissociation between rhythm- and interval-based prediction in the cerebellum and basal ganglia, respectively, and will demonstrate a role for the cerebellum in attentional control of perceptual sensitivity in time. Finally, using EEG in neurodegenerative patients, I will demonstrate that the cerebellum controls temporal adjustment of cortico-striatal neural dynamics, and use computational modeling to identify cerebellar-controlled neural parameters. Altogether, these findings reveal functionally and neural context-specificity and subcortical contributions to temporal anticipation, revising our understanding of dynamic cognition.

SeminarNeuroscienceRecording

NMC4 Short Talk: An optogenetic theory of stimulation near criticality

Brandon Benson
Stanford University
Dec 1, 2021

Recent advances in optogenetics allow for stimulation of neurons with sub-millisecond spike jitter and single neuron selectivity. Already this precision has revealed new levels of cortical sensitivity: stimulating tens of neurons can yield changes in the mean firing rate of thousands of similarly tuned neurons. This extreme sensitivity suggests that cortical dynamics are near criticality. Criticality is often studied in neural systems as a non-equilibrium thermodynamic process in which scale-free patterns of activity, called avalanches, emerge between distinct states of spontaneous activity. While criticality is well studied, it is still unclear what these distinct states of spontaneous activity are and what responses we expect from stimulation of this activity. By answering these questions, optogenetic stimulation will become a new avenue for approaching criticality and understanding cortical dynamics. Here, for the first time, we study the effects of optogenetic-like stimulation on a model near criticality. We study a model of Inhibitory/Excitatory (I/E) Leaky Integrate and Fire (LIF) spiking neurons which display a region of high sensitivity as seen in experiments. We find that this region of sensitivity is, indeed, near criticality. We derive the Dynamic Mean Field Theory of this model and find that the distinct states of activity are asynchrony and synchrony. We use our theory to characterize response to various types and strengths of optogenetic stimulation. Our model and theory predict that asynchronous, near-critical dynamics can have two qualitatively different responses to stimulation: one characterized by high sensitivity, discrete event responses, and high trial-to-trial variability, and another characterized by low sensitivity, continuous responses with characteristic frequencies, and low trial-to-trial variability. While both response types may be considered near-critical in model space, networks which are closest to criticality show a hybrid of these response effects.

SeminarNeuroscienceRecording

Timing errors and decision making

Fuat Balci
University of Manitoba
Nov 30, 2021

Error monitoring refers to the ability to monitor one's own task performance without explicit feedback. This ability is studied typically in two-alternative forced-choice (2AFC) paradigms. Recent research showed that humans can also keep track of the magnitude and direction of errors in different magnitude domains (e.g., numerosity, duration, length). Based on the evidence that suggests a shared mechanism for magnitude representations, we aimed to investigate whether metric error monitoring ability is commonly governed across different magnitude domains. Participants reproduced/estimated temporal, numerical, and spatial magnitudes after which they rated their confidence regarding first order task performance and judged the direction of their reproduction/estimation errors. Participants were also tested in a 2AFC perceptual decision task and provided confidence ratings regarding their decisions. Results showed that variability in reproductions/estimations and metric error monitoring ability, as measured by combining confidence and error direction judgements, were positively related across temporal, spatial, and numerical domains. Metacognitive sensitivity in these metric domains was also positively associated with each other but not with metacognitive sensitivity in the 2AFC perceptual decision task. In conclusion, the current findings point at a general metric error monitoring ability that is shared across different metric domains with limited generalizability to perceptual decision-making.

SeminarNeuroscienceRecording

Gap Junction Coupling between Photoreceptors

Stephen Massey
University of Texas
Sep 20, 2021

Simply put, the goal of my research is to describe the neuronal circuitry of the retina. The organization of the mammalian retina is certainly complex but it is not chaotic. Although there are many cell types, most adhere to a relatively constant morphology and they are distributed in non-random mosaics. Furthermore, each cell type ramifies at a characteristic depth in the retina and makes a stereotyped set of synaptic connections. In other words, these neurons form a series of local circuits across the retina. The next step is to identify the simplest and commonest of these repeating neural circuits. They are the building blocks of retinal function. If we think of it in this way, the retina is a fabulous model for the rest of the CNS. We are interested in identifying specific circuits and cell types that support the different functions of the retina. For example, there appear to be specific pathways for rod and cone mediated vision. Rods are used under low light conditions and rod circuitry is specialized for high sensitivity when photons are scarce (when you’re out camping, starlight). The hallmark of the rod-mediated system is monochromatic vision. In contrast, the cone circuits are specialized for high acuity and color vision under relatively bright or daylight conditions. Individual neurons may be filled with fluorescent dyes under visual control. This is achieved by impaling the cell with a glass microelectrode using a 3D micromanipulator. We are also interested in the diffusion of dye through coupled neuronal networks in the retina. The dye filled cells are also combined with antibody labeling to reveal neuronal connections and circuits. This triple-labeled material may be viewed and reconstructed in 3 dimensions by multi-channel confocal microscopy. We have our own confocal microscope facility in the department and timeslots are available to students in my lab.

SeminarNeuroscienceRecording

Acetylcholine modulation of short-term plasticity is critical to reliable long-term plasticity in hippocampal synapses

Rohan Sharma
Suhita lab, Indian Institute of Science Education and Research Pune
Jul 28, 2021

CA3-CA1 synapses in the hippocampus are the initial locus of episodic memory. The action of acetylcholine alters cellular excitability, modifies neuronal networks, and triggers secondary signaling that directly affects long-term plasticity (LTP) (the cellular underpinning of memory). It is therefore considered a critical regulator of learning and memory in the brain. Its action via M4 metabotropic receptors in the presynaptic terminal of the CA3 neurons and M1 metabotropic receptors in the postsynaptic spines of CA1 neurons produce rich dynamics across multiple timescales. We developed a model to describe the activation of postsynaptic M1 receptors that leads to IP3 production from membrane PIP2 molecules. The binding of IP3 to IP3 receptors in the endoplasmic reticulum (ER) ultimately causes calcium release. This calcium release from the ER activates potassium channels like the calcium-activated SK channels and alters different aspects of synaptic signaling. In an independent signaling cascade, M1 receptors also directly suppress SK channels and the voltage-activated KCNQ2/3 channels, enhancing post-synaptic excitability. In the CA3 presynaptic terminal, we model the reduction of the voltage sensitivity of voltage-gated calcium channels (VGCCs) and the resulting suppression of neurotransmitter release by the action of the M4 receptors. Our results show that the reduced initial release probability because of acetylcholine alters short-term plasticity (STP) dynamics. We characterize the dichotomy of suppressing neurotransmitter release from CA3 neurons and the enhanced excitability of the postsynaptic CA1 spine. Mechanisms underlying STP operate over a few seconds, while those responsible for LTP last for hours, and both forms of plasticity have been linked with very distinct functions in the brain. We show that the concurrent suppression of neurotransmitter release and increased sensitivity conserves neurotransmitter vesicles and enhances the reliability in plasticity. Our work establishes a relationship between STP and LTP coordinated by neuromodulation with acetylcholine.

SeminarNeuroscienceRecording

Using opsin genes to see through the eyes of a fish

Karen Carleton
University of Maryland
Jul 26, 2021

Many animals are highly visual. They view their world through photoreceptors sensitive to different wavelengths of light. Animal survival and optimal behavioral performance may select for varying photoreceptor sensitivities depending on animal habitat or visual tasks. Our goal is to understand what drives visual diversity from both an evolutionary and molecular perspective. The group of more than 2000 cichlid fish species are an ideal system for examining such diversity. Cichlid are a colorful group of fresh water fishes. They have undergone adaptive radiation throughout Africa and the new world and occur in rivers and lakes that vary in water clarity. They are also behaviorally complex, having diverse behaviors for foraging, mate choice and even parental care. As a result, cichlids have highly diverse visual systems with cone sensitivities shifting by 30-90 nm between species. Although this group has seven cone opsin genes, individual species differ in which subset of the cone opsins they express. Some species show developmental shifts in opsin expression, switching from shorter to longer wavelength opsins through ontogeny. Other species modify that developmental program to express just one of the sets, causing the large sensitivity differences. Cichlids are therefore natural mutants for opsin expression. We have used cichlid diversity to explore the relationship between visual sensitivities and ecology. We have also exploited the genomic power of the cichlid system to identify genes and mutations that cause opsin expression shifts. Ultimately, our goal is to learn how different cichlid species see the world and whether differences matter. Behavioral experiments suggest they do indeed use color vision to survive and thrive. Cichlids therefore are a unique model for exploring how visual systems evolve in a changing world.

SeminarNeuroscience

Targeting the brain to improve obesity and type 2 diabetes

Lora Heisler
University of Aberdeen
Jul 19, 2021

The increasing prevalence of obesity and type 2 diabetes (T2D) and associated morbidity and mortality emphasizes the need for a more complete understanding of the mechanisms mediating energy homeostasis to accelerate the identification of new medications. Recent reports indicate that obesity medication, 5-hydroxytryptamine (5-HT, serotonin)2C receptor (5-HT2CR) agonist lorcaserin improves glycemic control in association with weight loss in obese patients with T2D. We examined whether lorcaserin has a direct effect on insulin sensitivity and how this effect is achieved. We clarify that lorcaserin dose-dependently improves glycemic control in a mouse model of T2D without altering body weight. Examining the mechanism of this effect, we reveal a necessary and sufficient neurochemical mediator of lorcaserin’s glucoregulatory effects, via activation of brain pro-opiomelanocortin (POMC) peptides. We observed that lorcaserin reduces hepatic glucose production and improves insulin sensitivity. These data suggest that lorcaserin’s action within the brain represents a mechanistically novel treatment for T2D: findings of significance to a prevalent global disease.

SeminarNeuroscience

Virtual launch and webinar: Magnetic Particle Imaging at Monash University

Professor Gary Egan, Dr Patrick Goodwill, Associate Professor Christoph Hagemeyer, Professor Vipul Bansal, Dr Karen Alt
Monash University
Jun 15, 2021

Magnetic Particle Imaging (MPI) is a new non-invasive imaging technique with significantly increased sensitivity over MRI and faster acquisition times than PET and MRI. The MPI capability at the Alfred Research Alliance - Monash Biomedical Imaging site in Melbourne, Australia, is the world’s first MPI system with Computed Tomography (CT) and Hyperthermia capabilities. It provides unique capabilities that open the door to cutting-edge opportunities for interdisciplinary projects in medical research, chemistry and biotechnology. The webinar will involve: * official launch of Magnetic Particle Imaging at Monash University * the MPI system supplier, Magnetic Insight, discussing the world first technology and its potential * presentations from key researchers outlining MPI applications and the benefits of utilising the technology.

SeminarNeuroscienceRecording

Direction selectivity in hearing: monaural phase sensitivity in octopus neurons

Philip Joris
KU Leuven
May 17, 2021

The processing of temporal sound features is fundamental to hearing, and the auditory system displays a plethora of specializations, at many levels, to enable such processing. Octopus neurons are the most extreme temporally-specialized cells in the auditory (and perhaps entire) brain, which make them intriguing but also difficult to study. Notwithstanding the scant physiological data, these neurons have been a favorite cell type of modeling studies which have proposed that octopus cells have critical roles in pitch and speech perception. We used a range of in vivo recording and labeling methods to examine the hypothesis that tonotopic ordering of cochlear afferents combines with dendritic delays to compensate for cochlear delay - which would explain the highly entrained responses of octopus cells to sound transients. Unexpectedly, the experiments revealed that these neurons have marked selectivity to the direction of fast frequency glides, which is tied in a surprising way to intrinsic membrane properties and subthreshold events. The data suggest that octopus cells have a role in temporal comparisons across frequency and may play a role in auditory scene analysis.

SeminarNeuroscienceRecording

Mechanisms underlying detection and temporal sensitivity of single-photon responses in the mammalian retina

Alapakkam Sampath
UCLA
May 10, 2021

We have long known that rod and cone signals interact within the retina and can even contribute to color vision, but the extent of these influences has remained unclear. New results with more powerful methods of RNA expression profiling, specific cell labeling, and single-cell recording have provided greater clarity and are showing that rod and cone signals can mix at virtually every level of signal processing. These interactions influence the integration of retinal signals and make an important contribution to visual perception.

SeminarNeuroscience

Reward processing in psychosis: adding meanings to the findings

Suzana Kazanova
Neuroscience, Research Group Psychiatry, Center for Contextual Psychiatry, University of Leuven, Belgium
Dec 8, 2020

Much of our daily behavior is driven by rewards. The ability to learn to pursue rewarding experiences is, in fact, an essential metric of mental health. Conversely, reduced capacity to engage in adaptive goal-oriented behavior is the hallmark of apathy, and present in the psychotic disorder. The search for its underlying mechanisms has resulted in findings of profound impairments in learning from rewards and the associated blunted activation in key reward areas of the brain of patients with psychosis. An emerging research field has been relying on digital phenotyping tools and ecological momentary assessments (EMA) that map patients’ current mood, behavior and context in the flow of their daily lives. Using these tools, we have started to see a different picture of apathy, one that is exquisitely driven by the environment. For one, reward sensitivity appears to be blunted by stressors, and exposure to undue chronic stress in the daily life may result in apathy in those predisposed to psychosis. Secondly, even patients with psychosis who exhibit clinically elevated levels of apathy are perfectly capable of seeking out and enjoying social interactions in their daily life, if their environment allows them to do so. The use of digital phenotyping tools in combination with neuroimaging of apathy not only allows us to add meanings to the neurobiological findings, but could also help design rational interventions.

SeminarNeuroscience

Development of the social brain in adolescence and effects of social distancing

Sarah-Jayne Blakemore
Department of Psychology, University of Cambridge
Nov 24, 2020

Adolescence is a period of life characterised by heightened sensitivity to social stimuli, an increased need for peer interaction and peer acceptance, and development of the social brain. Lockdown and social distancing measures intended to mitigate the spread of COVID-19 are reducing the opportunity to engage in face-to-face social interaction with peers. The consequences of social distancing on human social brain and social cognitive development are unknown, but animal research has shown that social deprivation and isolation have unique effects on brain and behaviour in adolescence compared with other stages of life. It is possible that social distancing might have a disproportionate effect on an age group for whom peer interaction is a vital aspect of development.

SeminarNeuroscienceRecording

The emergence of contrast invariance in cortical circuits

Tatjana Tchumatchenko
Max Planck Institute for Brain Research
Nov 13, 2020

Neurons in the primary visual cortex (V1) encode the orientation and contrast of visual stimuli through changes in firing rate (Hubel and Wiesel, 1962). Their activity typically peaks at a preferred orientation and decays to zero at the orientations that are orthogonal to the preferred. This activity pattern is re-scaled by contrast but its shape is preserved, a phenomenon known as contrast invariance. Contrast-invariant selectivity is also observed at the population level in V1 (Carandini and Sengpiel, 2004). The mechanisms supporting the emergence of contrast-invariance at the population level remain unclear. How does the activity of different neurons with diverse orientation selectivity and non-linear contrast sensitivity combine to give rise to contrast-invariant population selectivity? Theoretical studies have shown that in the balance limit, the properties of single-neurons do not determine the population activity (van Vreeswijk and Sompolinsky, 1996). Instead, the synaptic dynamics (Mongillo et al., 2012) as well as the intracortical connectivity (Rosenbaum and Doiron, 2014) shape the population activity in balanced networks. We report that short-term plasticity can change the synaptic strength between neurons as a function of the presynaptic activity, which in turns modifies the population response to a stimulus. Thus, the same circuit can process a stimulus in different ways –linearly, sublinearly, supralinearly – depending on the properties of the synapses. We found that balanced networks with excitatory to excitatory short-term synaptic plasticity cannot be contrast-invariant. Instead, short-term plasticity modifies the network selectivity such that the tuning curves are narrower (broader) for increasing contrast if synapses are facilitating (depressing). Based on these results, we wondered whether balanced networks with plastic synapses (other than short-term) can support the emergence of contrast-invariant selectivity. Mathematically, we found that the only synaptic transformation that supports perfect contrast invariance in balanced networks is a power-law release of neurotransmitter as a function of the presynaptic firing rate (in the excitatory to excitatory and in the excitatory to inhibitory neurons). We validate this finding using spiking network simulations, where we report contrast-invariant tuning curves when synapses release the neurotransmitter following a power- law function of the presynaptic firing rate. In summary, we show that synaptic plasticity controls the type of non-linear network response to stimulus contrast and that it can be a potential mechanism mediating the emergence of contrast invariance in balanced networks with orientation-dependent connectivity. Our results therefore connect the physiology of individual synapses to the network level and may help understand the establishment of contrast-invariant selectivity.

SeminarNeuroscienceRecording

The developing visual brain – answers and questions

Janette Atkinson & Oliver Braddick
UCL & Oxford
Oct 27, 2020

We will start our talk with a short video of our research, illustrating methods (some old and new) and findings that have provided our current understanding of how visual capabilities develop in infancy and early childhood. However, our research poses some outstanding questions. We will briefly discuss three issues, which are linked by a common focus on the development of visual attentional processing: (1) How do recurrent cortical loops contribute to development? Cortical selectivity (e.g., to orientation, motion, and binocular disparity) develops in the early months of life. However, these systems are not purely feedforward but depend on parallel pathways, with recurrent feedback loops playing a critical role. The development of diverse networks, particularly for motion processing, may explain changes in dynamic responses and resolve developmental data obtained with different methodologies. One possible role for these loops is in top-down attentional control of visual processing. (2) Why do hyperopic infants become strabismic (cross-eyes)? Binocular interaction is a particularly sensitive area of development. Standard clinical accounts suppose that long-sighted (hyperopic) refractive errors require accommodative effort, putting stress on the accommodation-convergence link that leads to its breakdown and strabismus. Our large-scale population screening studies of 9-month infants question this: hyperopic infants are at higher risk of strabismus and impaired vision (amblyopia and impaired attention) but these hyperopic infants often under- rather than over-accommodate. This poor accommodation may reflect poor early attention processing, possibly a ‘soft sign’ of subtle cerebral dysfunction. (3) What do many neurodevelopmental disorders have in common? Despite similar cognitive demands, global motion perception is much more impaired than global static form across diverse neurodevelopmental disorders including Down and Williams Syndromes, Fragile-X, Autism, children with premature birth and infants with perinatal brain injury. These deficits in motion processing are associated with deficits in other dorsal stream functions such as visuo-motor co-ordination and attentional control, a cluster we have called ‘dorsal stream vulnerability’. However, our neuroimaging measures related to motion coherence in typically developing children suggest that the critical areas for individual differences in global motion sensitivity are not early motion-processing areas such as V5/MT, but downstream parietal and frontal areas for decision processes on motion signals. Although these brain networks may also underlie attentional and visuo-motor deficits , we still do not know when and how these deficits differ across different disorders and between individual children. Answering these questions provide necessary steps, not only increasing our scientific understanding of human visual brain development, but also in designing appropriate interventions to help each child achieve their full potential.

SeminarNeuroscienceRecording

Dynamic computation in the retina by retuning of neurons and synapses

Leon Lagnado
University of Sussex
Sep 16, 2020

How does a circuit of neurons process sensory information? And how are transformations of neural signals altered by changes in synaptic strength? We investigate these questions in the context of the visual system and the lateral line of fish. A distinguishing feature of our approach is the imaging of activity across populations of synapses – the fundamental elements of signal transfer within all brain circuits. A guiding hypothesis is that the plasticity of neurotransmission plays a major part in controlling the input-output relation of sensory circuits, regulating the tuning and sensitivity of neurons to allow adaptation or sensitization to particular features of the input. Sensory systems continuously adjust their input-output relation according to the recent history of the stimulus. A common alteration is a decrease in the gain of the response to a constant feature of the input, termed adaptation. For instance, in the retina, many of the ganglion cells (RGCs) providing the output produce their strongest responses just after the temporal contrast of the stimulus increases, but the response declines if this input is maintained. The advantage of adaptation is that it prevents saturation of the response to strong stimuli and allows for continued signaling of future increases in stimulus strength. But adaptation comes at a cost: a reduced sensitivity to a future decrease in stimulus strength. The retina compensates for this loss of information through an intriguing strategy: while some RGCs adapt following a strong stimulus, a second population gradually becomes sensitized. We found that the underlying circuit mechanisms involve two opposing forms of synaptic plasticity in bipolar cells: synaptic depression causes adaptation and facilitation causes sensitization. Facilitation is in turn caused by depression in inhibitory synapses providing negative feedback. These opposing forms of plasticity can cause simultaneous increases and decreases in contrast-sensitivity of different RGCs, which suggests a general framework for understanding the function of sensory circuits: plasticity of both excitatory and inhibitory synapses control dynamic changes in tuning and gain.

SeminarNeuroscience

Theory of gating in recurrent neural networks

Kamesh Krishnamurthy
Princeton University
Sep 16, 2020

Recurrent neural networks (RNNs) are powerful dynamical models, widely used in machine learning (ML) for processing sequential data, and also in neuroscience, to understand the emergent properties of networks of real neurons. Prior theoretical work in understanding the properties of RNNs has focused on models with additive interactions. However, real neurons can have gating i.e. multiplicative interactions, and gating is also a central feature of the best performing RNNs in machine learning. Here, we develop a dynamical mean-field theory (DMFT) to study the consequences of gating in RNNs. We use random matrix theory to show how gating robustly produces marginal stability and line attractors – important mechanisms for biologically-relevant computations requiring long memory. The long-time behavior of the gated network is studied using its Lyapunov spectrum, and the DMFT is used to provide a novel analytical expression for the maximum Lyapunov exponent demonstrating its close relation to relaxation-time of the dynamics. Gating is also shown to give rise to a novel, discontinuous transition to chaos, where the proliferation of critical points (topological complexity) is decoupled from the appearance of chaotic dynamics (dynamical complexity), contrary to a seminal result for additive RNNs. Critical surfaces and regions of marginal stability in the parameter space are indicated in phase diagrams, thus providing a map for principled parameter choices for ML practitioners. Finally, we develop a field-theory for gradients that arise in training, by incorporating the adjoint sensitivity framework from control theory in the DMFT. This paves the way for the use of powerful field-theoretic techniques to study training/gradients in large RNNs.

SeminarNeuroscience

Circuit dysfunction and sensory processing in Fragile X Syndrome

Carlos Portera-Cailliau
UCLA
Jun 23, 2020

To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we have adopted a symptom-to-circuit approach in theFmr1-/- mouse model of Fragile X syndrome (FXS). Using a go/no-go task and in vivo 2-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons in primary visual cortex, and a decrease in the activity of parvalbumin (PV) interneurons. Restoring visually evoked activity in PV cells in Fmr1-/- mice with a chemogenetic (DREADD) strategy was sufficient to rescue their behavioural performance. Strikingly, human subjects with FXS exhibit similar impairments in visual discrimination as Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in FXS. More recently, we find that the ability of Fmr1-/- mice to perform the visual discrimination task is also drastically impaired in the presence of visual or auditory distractors, suggesting that sensory hypersensitivity may affect perceptual learning in autism.

SeminarNeuroscienceRecording

Vision in dynamically changing environments

Marion Silies
Johannes Gutenberg-Universität Mainz, Germany
May 18, 2020

Many visual systems can process information in dynamically changing environments. In general, visual perception scales with changes in the visual stimulus, or contrast, irrespective of background illumination. This is achieved by adaptation. However, visual perception is challenged when adaptation is not fast enough to deal with sudden changes in overall illumination, for example when gaze follows a moving object from bright sunlight into a shaded area. We have recently shown that the visual system of the fly found a solution by propagating a corrective luminance-sensitive signal to higher processing stages. Using in vivo two-photon imaging and behavioural analyses we showed that distinct OFF-pathway inputs encode contrast and luminance. The luminance-sensitive pathway is particularly required when processing visual motion in contextual dim light, when pure contrast sensitivity underestimates the salience of a stimulus. Recent work in the lab has addressed the question how two visual pathways obtain such fundamentally different sensitivities, given common photoreceptor input. We are furthermore currently working out the network-based strategies by which luminance- and contrast-sensitive signals are combined to guide appropriate visual behaviour. Together, I will discuss the molecular, cellular, and circuit mechanisms that ensure contrast computation, and therefore robust vision, in fast changing visual scenes.

ePosterNeuroscience

A Biophysical Mechanism for Changing the Threat Sensitivity of Escape Behavior

Yaara Lefler, Yeqing Wang, Goncalo Ferreira, Tiago Branco

COSYNE 2023

ePosterNeuroscience

Distinct transformations of perceptual sensitivity by inhibitory neuron subtypes in V1

Joseph Del Rosario, Soon Ho Kim, Zachary Mobille, Kayla Peelman, Stefano Coletta, Brice Williams, Alejandra Del Castillo Valerio, Hannah Choi, Bilal Haider

COSYNE 2023

ePosterNeuroscience

Asymmetrical modulations of decision and movement speeds during self-paced foraging reveal the dorsal striatum selective contribution to effort sensitivity

Thomas Morvan, Marie Kurtz, Christophe Eloy, David Robbe

FENS Forum 2024

ePosterNeuroscience

Behavioural hypersensitivity to CO2 is associated with increased engagement of the insula in subjects with high trait anxiety

Simone Sartori, Nino Kobakhidze, Francesca Silvagni, Claudia Schmuckermair, Arnau Ramos-Prats, Pawel Matulewicz, Sarah Gorkiewicz, Gaia Novarino, Francesco Ferraguti, Nicolas Singewald

FENS Forum 2024

ePosterNeuroscience

A biophysical mechanism for changing the threat sensitivity of escape behaviour

Yaara Lefler, Yeqing Wang, Goncalo Ferreira, Tiago Branco

FENS Forum 2024

ePosterNeuroscience

Differential sensitivity and molecular responses of malignant cells derived from neuronal and glial cells to ER and proteasome stress

Peter Racay, Ivana Pilchova, Katarina Dibdiakova, Jaroslava Guzikova, Monika Liskova, Lubos Hudak, Jozef Hatok

FENS Forum 2024

ePosterNeuroscience

Effects of 5G radiofrequencies (26 GHz) in healthy and depressive subjects: A behavioral approach of electromagnetic hypersensitivity (EHS) in male and female rats

Adrien Vérité, Brigitte Cosquer, Maté Döbrössy, Pierre Veinante, Niels Kuster, Isaac Alonso Marin, Myles Capstick, Jean Christophe Cassel, Anne Pereira de Vasconcelos

FENS Forum 2024

ePosterNeuroscience

High sensitivity mapping of brain-wide functional networks in awake mice using simultaneous multi-slice fUS imaging

Jeremy Ferrier, Adrien Bertolo, Silvia Cazzanelli, Samuel Diebolt, Sophie Pezet, Mickael Tanter, Bruno-Felix Osmanski, Mathieu Pernot, Thomas Deffieux

FENS Forum 2024

ePosterNeuroscience

High-sensitivity quantification of AAV neutralization from preclinical model and human sera

Beatrix Kovács, Aron Szepesi, Viktora Szabo, Mirella Barboni, Zoltan Zsolt Nagy, Balazs Rozsa, Daniel Hillier

FENS Forum 2024

ePosterNeuroscience

Hyposensitivity to thermal stimulus with prefrontal cortical implication in two animal models of autism spectrum disorder

Ming-chia Chu, Pei-Yu Kao, Ssu-Chi Tsai, Han-Fang Wu, Hsiang Chi, Shu-Jui Chia, Yi-Chao Lee, Hui-Ching Lin

FENS Forum 2024

ePosterNeuroscience

Loss of the presynaptic scaffold Piccolo reduces Ca2+ sensitivity of glutamate release and short-term plasticity in small brain synapses

Anke Boerner, Debarpan Guhathakurta, Kaspar Gierke, Bartomeu Perelló-Amorós, Enes Yağız Akdaş, Renato Frischknecht, Johann Helmut Brandstätter, Anna Fejtova

FENS Forum 2024

ePosterNeuroscience

Maternal separation modifies the stress sensitivity, electrophysiology, and morphology of rat nucleus incertus neurons

Anna Gugula, Patryk Sambak, Aleksandra Trenk, Sylwia Drabik, Aleksandra Nogaj, Zbigniew Soltys, Andrew L. Gundlach, Anna Blasiak

FENS Forum 2024

ePosterNeuroscience

Modeling pain sensitivity in healthy individuals: The influence of emotional traits and resilience

Ombretta Caspani, Niko Möller-Grell, Genser Bernd, Jan Vollert, Finnerup Nanna, Zahra Nochi, Hatice Tankisi, Andrea Truini, Caterina Leone, Andre Mouraux, Lieve Filbrich, Louisien Lebrun, Vishvarani Wanigasekera, Sophie Clarke, Irene Tracey, Luis Garcia-Larrea, Rolf-Detlef Treede

FENS Forum 2024

ePosterNeuroscience

The NKCC1 inhibitor bumetanide restores cortical feedforward inhibition and lessens sensory hypersensitivity in early postnatal Fragile X mice

Nazim Kourdougli, Toshihiro Nomura, Michelle Wu, Anouk Heuvelmans, Zoë Dobler, Anis Contractor, Carlos Portera-Cailliau

FENS Forum 2024

ePosterNeuroscience

Ozone effect on olfactory sensitivity and olfactory bulb dopaminergic neuron excitability

Angela Pignatelli, Mascia Benedusi, Alessandra Pecorelli, Mario Barbieri, Giuseppe Valacchi

FENS Forum 2024

ePosterNeuroscience

Role of GRIK1 in altered pain sensitivity in a mouse model of Down syndrome

Sofia Degiorgi, Ana Valero Paternain, M. Isabel Aller, Juan Lerma

FENS Forum 2024

ePosterNeuroscience

Self-reported cognitive confidence and negative beliefs about thinking predict metacognitive sensitivity in a pilot transcranial direct current stimulation (tDCS) experiment

Daniele Saccenti, Andrea Stefano Moro, Sandra Sassaroli, Mattia Ferro, Jacopo Lamanna

FENS Forum 2024

ePosterNeuroscience

Sensitivity to envelope and pulse timing interaural time differences in prosthetic hearing

Shiyi Fang, Fei Peng, Bruno Castellaro, Muhammad Zeeshan, Nicole Rosskothen-Kuhl, Jan Schnupp

FENS Forum 2024

ePosterNeuroscience

Sensitivity of inferior colliculus neurons to interaural time and level differences in adult neonatally deafened rats

Muhammad Zeeshan, Fei Peng, Bruno Castellaro, Shiyi Fang, Nicole Rosskothen-Kuhl, Jan W.H. Schnupp

FENS Forum 2024

ePosterNeuroscience

Slow-paced breathing reduced perceptual sensitivity to facial expression

Shen-Mou Hsu, Chih-Hsin Tseng

FENS Forum 2024

ePosterNeuroscience

Sorting Nexin 27 neuronal silencing impairs cognitive function and increases cocaine sensitivity

Gisela Armada, Carina Soares-Cunha, Paul A Slesinger, Ana João Rodrigues, Neide Vieira

FENS Forum 2024

ePosterNeuroscience

The subthalamic nucleus controls nociceptive integration in the spinal cord and reverses nociceptive hypersensitivity in Parkinson’s disease

Rabia Bouali-Benazzouz, Elba Molpeceres Sierra, Houyam Tibar, Keri-Ann Charles, Khalid Oudaha, Frédéric Naudet, Pascal Fossat, Abdelhamid Benazzouz

FENS Forum 2024

ePosterNeuroscience

Unbiased whole-brain screens identify an agranular insula to basolateral amygdala projection that mediates pain hypersensitivity

May Hui, Gregory Corder, Kevin Beier

FENS Forum 2024

ePosterNeuroscience

Comparing CNNs and the brain: sensitivity to images altered in the frequency domain

Alexander Claman

Neuromatch 5

sensitivity coverage

65 items

Seminar41
ePoster24
Domain spotlight

Explore how sensitivity research is advancing inside Neuro.

Visit domain