TopicNeuro

sensory deprivation

3 Seminars3 ePosters1 Position

Latest

PositionNeuroscience

Dr Guillermina López-Bendito

Institute of Neuroscience of Alicante (CSIC-UMH)
Spain, Alicante
Jan 12, 2026

The López-Bendito Lab is interested in understanding and uncovering the principles underlying the development of sensory circuits with emphasis on the role of the thalamus in the development of cortical sensory maps. Furthermore, we are developing strategies for circuit restoration in sensory deprived mice. We are seeking for two (2) highly motivated postdoctoral scientists to investigate the cellular and molecular mechanisms involved in sensory circuit glia-to-neuron reprogramming. This 3-years project funded by La Caixa Foundation aims to understand the rules for region-specific reprogramming with the ultimate goal of recovery sensory thalamocortical circuits in sensory deprived mice. Applicants should have a proven track record and an independent working style.

SeminarNeuroscienceRecording

Brain (re)organization and sensory deprivation: Recycling the multisensory scaffolding of functional brain networks

Olivier Collignon
UCLouvain; University of Trento
May 6, 2021
SeminarNeuroscience

Brief Sensory Deprivation Triggers Cell Type-Specific Structural and Functional Plasticity in Olfactory Bulb Neurons

Li Huang, Joseph Innes, Emily Winson-Bushby
University of Cambridge, PDN
Apr 28, 2021

Can alterations in experience trigger different plastic modifications in neuronal structure and function, and if so, how do they integrate at the cellular level? To address this question, we interrogated circuitry in the mouse olfactory bulb responsible for the earliest steps in odor processing. We induced experience-dependent plasticity in mice of either sex by blocking one nostril for one day, a minimally invasive manipulation that leaves the sensory organ undamaged and is akin to the natural transient blockage suffered during common mild rhinal infections. We found that such brief sensory deprivation produced structural and functional plasticity in one highly specialized bulbar cell type: axon-bearing dopaminergic neurons in the glomerular layer. After 24 h naris occlusion, the axon initial segment (AIS) in bulbar dopaminergic neurons became significantly shorter, a structural modification that was also associated with a decrease in intrinsic excitability. These effects were specific to the AIS-positive dopaminergic subpopulation because no experience-dependent alterations in intrinsic excitability were observed in AIS-negative dopaminergic cells. Moreover, 24 h naris occlusion produced no structural changes at the AIS of bulbar excitatory neurons, mitral/tufted and external tufted cells, nor did it alter their intrinsic excitability. By targeting excitability in one specialized dopaminergic subpopulation, experience-dependent plasticity in early olfactory networks might act to fine-tune sensory processing in the face of continually fluctuating inputs. (https://www.jneurosci.org/content/41/10/2135)

SeminarNeuroscienceRecording

The thalamus that speaks to the cortex: spontaneous activity in the developing brain

Guillermina Lopez Bendito
Instituto de Neurociencias, Alicante (Spain)
Jun 22, 2020

Our research team runs several related projects studying the cellular and molecular mechanisms involved in the development of axonal connections in the brain. In particular, our aim is to uncover the principles underlying thalamocortical axonal wiring, maintenance and ultimately the rewiring of connections, through an integrated and innovative experimental programme. The development of the thalamocortical wiring requires a precise topographical sorting of its connections. Each thalamic nucleus receives specific sensory information from the environment and projects topographically to its corresponding cortical. A second level of organization is achieved within each area, where thalamocortical connections display an intra-areal topographical organization, allowing the generation of accurate spatial representations within each cortical area. Therefore, the level of organization and specificity of the thalamocortical projections is much more complex than other projection systems in the CNS. The central hypothesis of our laboratory is that thalamocortical input influences and maintains the functional architecture of the sensory cortices. We also believe that rewiring and plasticity events can be triggered by activity-dependent mechanisms in the thalamus. Three major questions are been focused in the laboratory: i) the role of spontaneous patterns of activity in thalamocortical wiring and cortical development, ii) the role of the thalamus and its connectivity in the neuroplastic cortical changes following sensory deprivation, and iii) reprogramming thalamic cells for sensory circuit restoration. Within these projects we are using several experimental programmes, these include: optical imaging, manipulation of gene expression in vivo, cell and molecular biology, biochemistry, cell culture, sensory deprivation paradigms and electrophysiology. The results derived from our investigations will contribute to our understating of how reprogramming of cortical wiring takes place following brain damage and how cortical structure is maintained.

ePosterNeuroscience

Astrocyte activity triggers adaptive myelin plasticity and increased neuronal excitability in the somatosensory cortex following sensory deprivation

Marina Sánchez-Petidier, Elena Fernandez-López, Elena Alonso-Calviño, Claudia Miguel-Quesada, Alba Fernández-González, José Ángel Rodríguez-Alfaro, Marta Zaforas, M Concepción Serrano, Fernando de Castro, Juan Aguilar, Juliana M Rosa

FENS Forum 2024

ePosterNeuroscience

Impact of barrel cortex lesions and sensory deprivation on perceptual decision-making: Insights from computer vision and time series clustering of freely moving behavioral strategies

Léa Peltier, Aron de Miranda, Alexy Louis, Nicolas Chenouard, Frédéric Gambino

FENS Forum 2024

ePosterNeuroscience

The molecular signature of astrocytes in a sensory deprivation model

Despoina Binou, Vsevolod Treshin, Madlen Haase, Martin Bens, Katjana Schwab, Martin Fischer, Anja Urbach, Otto W. Witte, Sidra Gull, Silvio Schmidt

FENS Forum 2024

sensory deprivation coverage

7 items

Seminar3
ePoster3
Position1
Domain spotlight

Explore how sensory deprivation research is advancing inside Neuro.

Visit domain