TopicNeuro

social interaction

30 Seminars13 ePosters

Latest

SeminarNeuroscience

From pecking order to ketamine - neural mechanism of social and emotional behavior

Hailan Hu
Zhejiang University School of Medicine, Hangzhou, China
Jun 22, 2023

Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.

SeminarNeuroscience

From pecking order to ketamine - neural mechanism of social and emotional behavior

Hailan Hu
Zhejiang University School of Medicine, Hangzhou, China
Jun 21, 2023

Emotions and social interactions color our lives and shape our behaviors. Using animal models and engineered manipulations, we aim to understand how social and emotional behaviors are encoded in the brain, focusing on the neural circuits underlying dominance hierarchy and depression. This lecture will highlight our recent discoveries on how downward social mobility leads to depression; how ketamine tames depression by blocking burst firing in the brain’s antireward center; and, how glia-neuron interaction plays a surprising role in this process. I will also present our recent work on the mechanism underlying the sustained antidepressant activity of ketamine and its brain region specificity. With these results, we hope to illuminate on a more unified theory on ketamine’s mode of action and inspire new treatment strategies for depression.

SeminarNeuroscienceRecording

Private oxytocin supply and its receptors in the hypothalamus for social avoidance learning

Takuya Osakada
NYU
Jan 31, 2023

Many animals live in complex social groups. To survive, it is essential to know who to avoid and who to interact. Although naïve mice are naturally attracted to any adult conspecifics, a single defeat experience could elicit social avoidance towards the aggressor for days. The neural mechanisms underlying the behavior switch from social approach to social avoidance remains incompletely understood. Here, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin receptor (OXTR) expressing cells in the anterior subdivision of ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance learning. After defeat, aVMHvlOXTR cells drastically increase their responses to aggressor cues. This response change is functionally important as optogenetic activation of aVMHvlOXTR cells elicits time-locked social avoidance towards a benign social target whereas inactivating the cells suppresses defeat-induced social avoidance. Furthermore, OXTR in the aVMHvl is itself essential for the behavior change. Knocking out OXTR in the aVMHvl or antagonizing the receptor during defeat, but not during post-defeat social interaction, impairs defeat-induced social avoidance. aVMHvlOXTR receives its private supply of oxytocin from SOROXT cells. SOROXT is highly activated by the noxious somatosensory inputs associated with defeat. Oxytocin released from SOROXT depolarizes aVMHvlOXTR cells and facilitates their synaptic potentiation, and hence, increases aVMHvlOXTR cell responses to aggressor cues. Ablating SOROXT cells impairs defeat-induced social avoidance learning whereas activating the cells promotes social avoidance after a subthreshold defeat experience. Altogether, our study reveals an essential role of SOROXT-aVMHvlOXTR circuit in defeat-induced social learning and highlights the importance of hypothalamic oxytocin system in social ranking and its plasticity.

SeminarNeuroscience

Decoding Natural Social Interactions from Neuronal Population Activity in Primates

Michael Platt
University of Pennsylvania, USA
Jan 13, 2023
SeminarNeuroscienceRecording

Protocols for the social transfer of pain and analgesia in mice

Monique L. Smith
UCSD
Dec 8, 2022

We provide protocols for the social transfer of pain and analgesia in mice. We describe the steps to induce pain or analgesia (pain relief) in bystander mice with a 1-h social interaction with a partner injected with CFA (complete Freund’s adjuvant) or CFA and morphine, respectively. We detail behavioral tests to assess pain or analgesia in the untreated bystander mice. This protocol has been validated in mice and rats and can be used for investigating mechanisms of empathy. Highlights • A protocol for the rapid social transfer of pain in rodents • Detailed requirements for handling and housing conditions • Procedures for habituation, social interaction, and pain induction and assessment • Adaptable for social transfer of analgesia and may be used to study empathy in rodents https://doi.org/10.1016/j.xpro.2022.101756

SeminarNeuroscienceRecording

Is Theory of Mind Analogical? Evidence from the Analogical Theory of Mind cognitive model

Irina Rabkina
Occidental College
Sep 29, 2022

Theory of mind, which consists of reasoning about the knowledge, belief, desire, and similar mental states of others, is a key component of social reasoning and social interaction. While it has been studied by cognitive scientists for decades, none of the prevailing theories of the processes that underlie theory of mind reasoning and development explain the breadth of experimental findings. I propose that this is because theory of mind is, like much of human reasoning, inherently analogical. In this talk, I will discuss several theory of mind findings from the psychology literature, the challenges they pose for our understanding of theory of mind, and bring in evidence from the Analogical Theory of Mind (AToM) cognitive model that demonstrates how these findings fit into an analogical understanding of theory of mind reasoning.

SeminarNeuroscience

Peripersonal space (PPS) as a primary interface for self-environment interactions

Andrea Serino
CHUV Lausanne, Switzerland
Jun 28, 2022

Peripersonal space (PPS) defines the portion of space where interactions between our body and the external environment more likely occur. There is no physical boundary defining the PPS with respect to the extrapersonal space, but PPS is continuously constructed by a dedicated neural system integrating external stimuli and tactile stimuli on the body, as a function of their potential interaction. This mechanism represents a primary interface between the individual and the environment. In this talk, I will present most recent evidence and highlight the current debate about the neural and computational mechanisms of PPS, its main functions and properties. I will discuss novel data showing how PPS dynamically shapes to optimize body-environment interactions. I will describe a novel electrophysiological paradigm to study and measure PPS, and show how this has been used to search for a basic marker of potentials of self-environment interaction in newborns and patients with disorders of consciousness. Finally, I will discuss how PPS is also involved in, and in turn shaped by, social interactions. Under these acceptances, I will discuss how PPS plays a key role in self-consciousness.

SeminarNeuroscience

Social immunity in ants: disease defense of the colony

Sylvia Cremer
Institute of Science and Technology Austria
May 24, 2022

Social insects fight disease as a collective. Their colonies are protected against disease by the combination of the individual immune defenses of all colony members and their jointly performed nest- and colony-hygiene. This social immunity is achieved by cooperative behaviors to reduce pathogen load of the colony and to prevent transmission along the social interaction networks of colony members. Individual and social immunity interact: performance of sanitary care can affect future disease susceptibility, yet also vice versa, individuals differing in susceptibility adjust their sanitary care performance to their individual risk of infection. I present the integrated approach we use to understand how colony protection arises from the individual and collective actions of colony members and how it affects pathogen communities and hence disease ecology.

SeminarNeuroscienceRecording

Interpersonal synchrony of body/brain, Solo & Team Flow

Shinsuke Shimojo
California Institute of Technology
Jan 28, 2022

Flow is defined as an altered state of consciousness with excessive attention and enormous sense of pleasure, when engaged in a challenging task, first postulated by a psychologist, the late M. Csikszentmihayli. The main focus of this talk will be “Team Flow,” but there were two lines of previous studies in our laboratory as its background. First is inter-body and inter-brain coordination/synchrony between individuals. Considering various rhythmic echoing/synchronization phenomena in animal behavior, it could be regarded as the biological, sub-symbolic and implicit origin of social interactions. The second line of precursor research is on the state of Solo Flow in game playing. We employed attenuation of AEP (Auditory Evoked Potential) to task-irrelevant sound probes as an objective-neural indicator of such a Flow status, and found that; 1) Mutual link between the ACC & the TP is critical, and 2) overall, top-down influence is enhanced while bottom-up causality is attenuated. Having these as the background, I will present our latest study of Team Flow in game playing. We found that; 3) the neural correlates of Team Flow is distinctively different from those of Solo Flow nor of non-flow social, 4) the left medial temporal cortex seems to form an integrative node for Team Flow, receiving input related to Solo Flow state from the right PFC and input related to social state from the right IFC, and 5) Intra-brain (dis)similarity of brain activity well predicts (dis)similarity of skills/cognition as well as affinity for inter-brain coherence.

SeminarNeuroscience

Neural Codes for Natural Behaviors in Flying Bats

Nachum Ulanovsky
Weizmann Institute
Jan 13, 2022

This talk will focus on the importance of using natural behaviors in neuroscience research – the “Natural Neuroscience” approach. I will illustrate this point by describing studies of neural codes for spatial behaviors and social behaviors, in flying bats – using wireless neurophysiology methods that we developed – and will highlight new neuronal representations that we discovered in animals navigating through 3D spaces, or in very large-scale environments, or engaged in social interactions. In particular, I will discuss: (1) A multi-scale neural code for very large environments, which we discovered in bats flying in a 200-meter long tunnel. This new type of neural code is fundamentally different from spatial codes reported in small environments – and we show theoretically that it is superior for representing very large spaces. (2) Rapid modulation of position × distance coding in the hippocampus during collision-avoidance behavior between two flying bats. This result provides a dramatic illustration of the extreme dynamism of the neural code. (3) Local-but-not-global order in 3D grid cells – a surprising experimental finding, which can be explained by a simple physics-inspired model, which successfully describes both 3D and 2D grids. These results strongly argue against many of the classical, geometrically-based models of grid cells. (4) I will also briefly describe new results on the social representation of other individuals in the hippocampus, in a highly social multi-animal setting. The lecture will propose that neuroscience experiments – in bats, rodents, monkeys or humans – should be conducted under evermore naturalistic conditions.

SeminarNeuroscience

Scaffolding up from Social Interactions: A proposal of how social interactions might shape learning across development

Sarah Gerson
Cardiff University
Dec 9, 2021

Social learning and analogical reasoning both provide exponential opportunities for learning. These skills have largely been studied independently, but my future research asks how combining skills across previously independent domains could add up to more than the sum of their parts. Analogical reasoning allows individuals to transfer learning between contexts and opens up infinite opportunities for innovation and knowledge creation. Its origins and development, so far, have largely been studied in purely cognitive domains. Constraining analogical development to non-social domains may mistakenly lead researchers to overlook its early roots and limit ideas about its potential scope. Building a bridge between social learning and analogy could facilitate identification of the origins of analogical reasoning and broaden its far-reaching potential. In this talk, I propose that the early emergence of social learning, its saliency, and its meaningful context for young children provides a springboard for learning. In addition to providing a strong foundation for early analogical reasoning, the social domain provides an avenue for scaling up analogies in order to learn to learn from others via increasingly complex and broad routes.

SeminarNeuroscience

Gestational exposure to environmental toxins, infections, and stressors are epidemiologically linked to neurodevelopmental disorders

Staci D. Bilbo
Duke University
Sep 13, 2021

Gestational exposure to environmental toxins, infections, and stressors are epidemiologically linked to neurodevelopmental disorders with strong male-bias, such as autism spectrum disorder. We modeled some of these prenatal risk factors in mice, by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly dysregulated the maternal immune system. Male but not female offspring displayed long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions, along with disruptions of gut structure and microbiome composition. Cellularly, prenatal stressors impaired microglial synaptic pruning in males during early postnatal development. Precise inhibition of microglial phagocytosis during the same critical period mimicked the impact of prenatal stressors on the male-specific social deficits. Conversely, modifying the gut microbiome rescued the social and cellular deficits, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development, perhaps via a gut-brain disruption.

SeminarNeuroscience

A brain circuit for curiosity

Mehran Ahmadlou
Netherlands Institute for Neuroscience
Jul 12, 2021

Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.

SeminarNeuroscienceRecording

Technologies for large scale cortical imaging and electrophysiology

Suhasa Kodandaramaiah
University of Minnesota
Jun 22, 2021

Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.

SeminarNeuroscienceRecording

Measuring behavior to measure the brain

Adam Calhoun
Murthy lab, Princeton University
Jun 16, 2021

Animals produce behavior by responding to a mixture of cues that arise both externally (sensory) and internally (neural dynamics and states). These cues are continuously produced and can be combined in different ways depending on the needs of the animal. However, the integration of these external and internal cues remains difficult to understand in natural behaviors. To address this gap, we have developed an unsupervised method to identify internal states from behavioral data, and have applied it to the study of a dynamic social interaction. During courtship, Drosophila melanogaster males pattern their songs using cues from their partner. This sensory-driven behavior dynamically modulates courtship directed at their partner. We use our unsupervised method to identify how the animal integrates sensory information into distinct underlying states. We then use this to identify the role of courtship neurons in either integrating incoming information or directing the production of the song, roles that were previously hidden. Our results reveal how animals compose behavior from previously unidentified internal states, a necessary step for quantitative descriptions of animal behavior that link environmental cues, internal needs, neuronal activity, and motor outputs.

SeminarNeuroscienceRecording

Structures in space and time - Hierarchical network dynamics in the amygdala

Yael Bitterman
Luethi lab, FMI for Biomedical Research
Jun 16, 2021

In addition to its role in the learning and expression of conditioned behavior, the amygdala has long been implicated in the regulation of persistent states, such as anxiety and drive. Yet, it is not evident what projections of the neuronal activity capture the functional role of the network across such different timescales, specifically when behavior and neuronal space are complex and high-dimensional. We applied a data-driven dynamical approach for the analysis of calcium imaging data from the basolateral amygdala, collected while mice performed complex, self-paced behaviors, including spatial exploration, free social interaction, and goal directed actions. The seemingly complex network dynamics was effectively described by a hierarchical, modular structure, that corresponded to behavior on multiple timescales. Our results describe the response of the network activity to perturbations along different dimensions and the interplay between slow, state-like representation and the fast processing of specific events and actions schemes. We suggest hierarchical dynamical models offer a unified framework to capture the involvement of the amygdala in transitions between persistent states underlying such different functions as sensory associative learning, action selection and emotional processing. * Work done in collaboration with Jan Gründemann, Sol Fustinana, Alejandro Tsai and Julien Courtin (@theLüthiLab)

SeminarNeuroscience

Towards targeted therapies for the treatment of Dravet Syndrome

Gaia Colasante
Ospedale San Raffaele
May 19, 2021

Dravet syndrome is a severe epileptic encephalopathy that begins during the first year of life and leads to severe cognitive and social interaction deficits. It is mostly caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes for the alpha-subunit of the voltage-gated sodium channel (Nav1.1) and is responsible mainly of GABAergic interneuron excitability. While different therapies based on the upregulation of the healthy allele of the gene are being developed, the dynamics of reversibility of the pathology are still unclear. In fact, whether and to which extent the pathology is reversible after symptom onset and if it is sufficient to ensure physiological levels of Scn1a during a specific critical period of time are open questions in the field and their answers are required for proper development of effective therapies. We generated a novel Scn1a conditional knock-in mouse model (Scn1aSTOP) in which the endogenous Scn1a gene is silenced by the insertion of a floxed STOP cassette in an intron of Scn1a gene; upon Cre recombinase expression, the STOP cassette is removed, and the mutant allele can be reconstituted as a functional Scn1a allele. In this model we can reactivate the expression of Scn1a exactly in the neuronal subtypes in which it is expressed and at its physiological level. Those aspects are crucial to obtain a final answer on the reversibility of DS after symptom onset. We exploited this model to demonstrate that global brain re-expression of the Scn1a gene when symptoms are already developed (P30) led to a complete rescue of both spontaneous and thermic inducible seizures and amelioration of behavioral abnormalities characteristic of this model. We also highlighted dramatic gene expression alterations associated with astrogliosis and inflammation that, accordingly, were rescued by Scn1a gene expression normalization at P30. Moreover, employing a conditional knock-out mouse model of DS we reported that ensuring physiological levels of Scn1a during the critical period of symptom appearance (until P30) is not sufficient to prevent the DS, conversely, mice start to die of SUDEP and develop spontaneous seizures. These results offer promising insights in the reversibility of DS and can help to accelerate therapeutic translation, providing important information on the timing for gene therapy delivery to Dravet patients.

SeminarNeuroscience

Hypothalamic control of internal states underlying social behaviors in mice

Tomomi Karigo
California Institute of Technology
Apr 26, 2021

Social interactions such as mating and fighting are driven by internal emotional states. How can we study internal states of an animal when it cannot tell us its subjective feelings? Especially when the meaning of the animal’s behavior is not clear to us, can we understand the underlying internal states of the animal? In this talk, I will introduce our recent work in which we used male mounting behavior in mice as an example to understand the underlying internal state of the animals. In many animal species, males exhibit mounting behavior toward females as part of the mating behavior repertoire. Interestingly, males also frequently show mounting behavior toward other males of the same species. It is not clear what the underlying motivation is - whether it is reproductive in nature or something distinct. Through detailed analysis of video and audio recordings during social interactions, we found that while male-directed and female-directed mounting behaviors are motorically similar, they can be distinguished by both the presence of ultrasonic vocalization during female-directed mounting (reproductive mounting) and the display of aggression following male-directed mounting (aggressive mounting). Using optogenetics, we further identified genetically defined neural populations in the medial preoptic area (MPOA) that mediate reproductive mounting and the ventrolateral ventromedial hypothalamus (VMHvl) that mediate aggressive mounting. In vivo microendocsopic imaging in MPOA and VMHvl revealed distinct neural ensembles that mainly encode either a reproductive or an aggressive state during which male or female directed mounting occurs. Together, these findings demonstrate that internal states are represented in the hypothalamus and that motorically similar behaviors exhibited under different contexts may reflect distinct internal states.

SeminarNeuroscienceRecording

Anterior Cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia

Monique Smith
Malenka lab, Stanford University
Apr 7, 2021

Empathy plays a critical role in social interactions, and many species, including rodents, display evolutionarily conserved behavioral antecedents of empathy. In both humans and rodents, the anterior cingulate cortex (ACC) encodes information about the affective state of others. However, little is known about which downstream targets of the ACC contribute to empathy behaviors. We optimized a protocol for the social transfer of pain behavior in mice and compared the ACC-dependent neural circuitry responsible for this behavior with the neural circuitry required for the social transfer of two related states: analgesia and fear. We found that a 1-hour social interaction between a bystander mouse and a cagemate experiencing inflammatory pain led to congruent mechanical hyperalgesia in the bystander. This social transfer led to activation of neurons in the ACC and several downstream targets, including the nucleus accumbens (NAc), which was revealed by monosynaptic rabies virus tracing to be directly connected to the ACC. Bidirectional manipulation of activity in ACC-to-NAc inputs influenced the acquisition of socially transferred pain. Further, the social transfer of analgesia also depended upon ACC-NAc inputs. By contrast, the social transfer of fear instead required activity in ACC projections to the basolateral amygdala. This shows that mice rapidly adopt the sensory-affective state of a social partner, regardless of the valance of the information (pain, fear, or pain relief). We find that the ACC generates specific and appropriate empathic behavioral responses through distinct downstream targets. More sophisticated understanding of evolutionarily conserved brain mechanisms of empathy will also expedite the development of new therapies for the empathy-related deficits associated with a broad range of neuropsychiatric disorders.

SeminarNeuroscience

The role of orexin/hypocretin in social behaviour

Derya Sargin
The Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute University of Calgary
Mar 8, 2021

My lab is focused on how brain encodes and modulates social interactions. Intraspecific social interactions are integral for survival and maintenance of society among all mammalian species. Despite the importance of social interactions, we lack a complete understanding of the brain circuitry involved in processing social behaviour. My lab investigates how the hypothalamic orexin (hypocretin) neurons and their downstream circuits participate in social interaction behaviours. These neurons are located exclusively in the hypothalamus that regulates complex and goal-directed behaviours. We recently identified that orexin neurons differentially encode interaction between familiar and novel animals. We are currently investigating how chronic social isolation, a risk factor for the development of social-anxiety like behaviours, affects orexin neuron activity and how we can manipulate the activity of these neurons to mitigate isolation-induced social deficits.

SeminarNeuroscienceRecording

Social transmission of maternal behavior

Ioana Carcea
Rutgers University
Dec 11, 2020

Maternal care is profoundly important for mammalian survival, and in many species requires the contribution of non-biological parents, or alloparents. In the absence of partum and post-partum related hormonal changes, alloparents acquire maternal skills from experience, by yet unknown mechanisms. One critical molecular signal for maternal behavior is oxytocin, a hormone centrally released by hypothalamic paraventricular nucleus (PVN). Do experiences that induce maternal behavior act by engaging PVN oxytocin neurons? To answer this, we used virgin female mice, animals that in the wild live in colonies with experienced mothers and their pups, helping with pup care. We replicated this setup in the lab, and we continuously monitored homecage behavior of virgin mice co-housed for days with a mother and litter, synchronized with recordings from virgin PVN cells, including from oxytocin neurons. Mothers engaged virgins in maternal care in part by shepherding virgins towards the nest, ensuring their proximity to pups, and in part by self-generating pup retrieval episodes, demonstrating maternal behavior to virgins. The frequency of shepherding and of dam retrievals correlates with virgin's subsequent ability to retrieve pups, a quintessential mouse maternal skill. These social interactions activated virgin PVN and gated behaviorally-relevant cortical plasticity for pup vocalizations. Thus, rodents can acquire maternal behavior by social transmission, and our results describe a mechanism for adapting brains of adult caregivers to infant needs via endogenous oxytocin.

SeminarNeuroscience

Reward processing in psychosis: adding meanings to the findings

Suzana Kazanova
Neuroscience, Research Group Psychiatry, Center for Contextual Psychiatry, University of Leuven, Belgium
Dec 8, 2020

Much of our daily behavior is driven by rewards. The ability to learn to pursue rewarding experiences is, in fact, an essential metric of mental health. Conversely, reduced capacity to engage in adaptive goal-oriented behavior is the hallmark of apathy, and present in the psychotic disorder. The search for its underlying mechanisms has resulted in findings of profound impairments in learning from rewards and the associated blunted activation in key reward areas of the brain of patients with psychosis. An emerging research field has been relying on digital phenotyping tools and ecological momentary assessments (EMA) that map patients’ current mood, behavior and context in the flow of their daily lives. Using these tools, we have started to see a different picture of apathy, one that is exquisitely driven by the environment. For one, reward sensitivity appears to be blunted by stressors, and exposure to undue chronic stress in the daily life may result in apathy in those predisposed to psychosis. Secondly, even patients with psychosis who exhibit clinically elevated levels of apathy are perfectly capable of seeking out and enjoying social interactions in their daily life, if their environment allows them to do so. The use of digital phenotyping tools in combination with neuroimaging of apathy not only allows us to add meanings to the neurobiological findings, but could also help design rational interventions.

SeminarNeuroscienceRecording

Cognition plus longevity equals culture: A new framework for understanding human brain evolution

Suzana Herculano-Houzel
Vanderbilt University
Dec 4, 2020

Narratives of human evolution have focused on cortical expansion and increases in brain size relative to body size, but considered that changes in life history, such as in age at sexual maturity and thus the extent of childhood and maternal dependence, or maximal longevity, are evolved features that appeared as consequences of selection for increased brain size, or increased cognitive abilities that decrease mortality rates, or due to selection for grandmotherly contribution to feeding the young. Here I build on my recent finding that slower life histories universally accompany increased numbers of cortical neurons across warm-blooded species to propose a simpler framework for human evolution: that slower development to sexual maturity and increased post-maturity longevity are features that do not require selection, but rather inevitably and immediately accompany evolutionary increases in numbers of cortical neurons, thus fostering human social interactions and cultural and technological evolution as generational overlap increases.

SeminarNeuroscience

Development of the social brain in adolescence and effects of social distancing

Sarah-Jayne Blakemore
Department of Psychology, University of Cambridge
Nov 24, 2020

Adolescence is a period of life characterised by heightened sensitivity to social stimuli, an increased need for peer interaction and peer acceptance, and development of the social brain. Lockdown and social distancing measures intended to mitigate the spread of COVID-19 are reducing the opportunity to engage in face-to-face social interaction with peers. The consequences of social distancing on human social brain and social cognitive development are unknown, but animal research has shown that social deprivation and isolation have unique effects on brain and behaviour in adolescence compared with other stages of life. It is possible that social distancing might have a disproportionate effect on an age group for whom peer interaction is a vital aspect of development.

SeminarNeuroscience

The early impact of COVID-19 on mental health and community physical health services and their patients’ mortality in Cambridgeshire and Peterborough, UK

Rudolf Cardinal
Department of Psychiatry, University of Cambridge
Nov 10, 2020

COVID -19 has affected social interaction and healthcare worldwide. This talk will focus on the impact of the pandemic and “lockdown” on mental health services, community physical health services, and patient mortality in Cambridgeshire and Peterborough, based on the analysis of de-identified data from the primary NHS provider of secondary care mental health services to this population (~0.86 million)

SeminarNeuroscience

Neurobiology of Social Behavior

Catherine Dulac
Harvard University
Sep 24, 2020

Social interactions are central to the human experience, yet it is also one of the faculty of the brain that is the most impaired by mental illness. Similarly, social interactions are essential for animals to survive, reproduce, and raise their young. Over the years, my lab has attempted to decipher the unique characteristics of social recognition: what are the unique cues that trigger distinct social behaviors, what is the nature and identity of social behavior circuits, how is the function of these circuits different in males and females and how are they modulated by the animal physiological status? In this lecture, I will describe our recent progress in using genetic, imaging, molecular and behavioral approaches to understand how the brain controls specific social behaviors in both males and females, and how areas throughout the brain participate in the positive and negative controls of specific social interactions. I will also describe how new approaches of single cell transcriptomics have enabled us to uncover specific cell populations involved in distinct social behaviors and the basis of their activity modulation according to the animal state.

SeminarNeuroscience

Motor Cortical Control of Vocal Interactions in a Neotropical Singing Mouse

Arkarup Banerjee
NYU Langone medical center
Sep 9, 2020

Using sounds for social interactions is common across many taxa. Humans engaged in conversation, for example, take rapid turns to go back and forth. This ability to act upon sensory information to generate a desired motor output is a fundamental feature of animal behavior. How the brain enables such flexible sensorimotor transformations, for example during vocal interactions, is a central question in neuroscience. Seeking a rodent model to fill this niche, we are investigating neural mechanisms of vocal interaction in Alston’s singing mouse (Scotinomys teguina) – a neotropical rodent native to the cloud forests of Central America. We discovered sub-second temporal coordination of advertisement songs (counter-singing) between males of this species – a behavior that requires the rapid modification of motor outputs in response to auditory cues. We leveraged this natural behavior to probe the neural mechanisms that generate and allow fast and flexible vocal communication. Using causal manipulations, we recently showed that an orofacial motor cortical area (OMC) in this rodent is required for vocal interactions (Okobi*, Banerjee* et. al, 2019). Subsequently, in electrophysiological recordings, I find neurons in OMC that track initiation, termination and relative timing of songs. Interestingly, persistent neural dynamics during song progression stretches or compresses on every trial to match the total song duration (Banerjee et al, in preparation). These results demonstrate robust cortical control of vocal timing in a rodent and upends the current dogma that motor cortical control of vocal output is evolutionarily restricted to the primate lineage.

SeminarNeuroscience

Neural and computational principles of the processing of dynamic faces and bodies

Martin Giese
University of Tübingen
Jul 8, 2020

Body motion is a fundamental signal of social communication. This includes facial as well as full-body movements. Combining advanced methods from computer animation with motion capture in humans and monkeys, we synthesized highly-realistic monkey avatar models. Our face avatar is perceived by monkeys as almost equivalent to a real animal, and does not induce an ‘uncanny valley effect’, unlike all other previously used avatar models in studies with monkeys. Applying machine-learning methods for the control of motion style, we were able to investigate how species-specific shape and dynamic cues influence the perception of human and monkey facial expressions. Human observers showed very fast learning of monkey expressions, and a perceptual encoding of expression dynamics that was largely independent of facial shape. This result is in line with the fact that facial shape evolved faster than the neuromuscular control in primate phylogenesis. At the same time, it challenges popular neural network models of the recognition of dynamic faces that assume a joint encoding of facial shape and dynamics. We propose an alternative physiologically-inspired neural model that realizes such an orthogonal encoding of facial shape and expression from video sequences. As second example, we investigated the perception of social interactions from abstract stimuli, similar to the ones by Heider & Simmel (1944), and also from more realistic stimuli. We developed and validated a new generative model for the synthesis of such social interaction, which is based on a modification of human navigation model. We demonstrate that the recognition of such stimuli, including the perception of agency, can be accounted for by a relatively elementary physiologically-inspired hierarchical neural recognition model, that does not require the assumption of sophisticated inference mechanisms, as postulated by some cognitive theories of social recognition. Summarizing, this suggests that essential phenomena in social cognition might be accounted for by a small set of simple neural principles that can be easily implemented by cortical circuits. The developed technologies for stimulus control form the basis of electrophysiological studies that can verify specific neural circuits, as the ones proposed by our theoretical models.

SeminarNeuroscience

Treating neurodevelopmental disorders: challenges, issues, problems, concerns, difficulties, harms, worries, doubts, but we need to start from somewhere

Laura Cancedda
Istituto Italiano di Tecnologia (IIT)
Jun 16, 2020

Neurodevelopmental disorders are a group of very heterogeneous diseases in which the development of the central nervous system is defective. In neurodevelopmental disorders defective brain development translates into aberrant brain function, which can manifest for example as impaired learning, motor function, or social interaction. Despites years of investigation in animal models and clinical research on neurodevelopmental disorders, there are currently no approved pharmacological treatments for core symptoms of the vast majority of them. Here, I will share some recent work (but also some apprehensions) of our laboratory on the development of strategies for the treatment of neurodevelopmental disorders, with a focus on Down syndrome.

ePosterNeuroscience

Circuit Mechanisms for Dynamic Social Interactions

Mala Murthy

Bernstein Conference 2024

ePosterNeuroscience

Multiscale Hierarchical Modeling Framework For Fully Mapping a Social Interaction

Shruthi Ravindranath,Talmo Pereira,Junyu Li,Jonathan Pillow,Mala Murthy

COSYNE 2022

ePosterNeuroscience

Multiscale Hierarchical Modeling Framework For Fully Mapping a Social Interaction

Shruthi Ravindranath,Talmo Pereira,Junyu Li,Jonathan Pillow,Mala Murthy

COSYNE 2022

ePosterNeuroscience

Modeling multi-timescale locomotor responses in female Drosophila during social interactions

Umesh Kumar Singla, Albert Lin, Jonathan Pillow, Mala Murthy

COSYNE 2025

ePosterNeuroscience

Behavioral impacts of simulated microgravity on male mice: Locomotion, social interactions and memory in a novel object recognition task

Jean-Luc Morel, Margot Issertine, Thomas Brioche, Angèle Chopard, Laurence Vico, Julie Le Merrer, Théo Fovet, Jérôme Becker

FENS Forum 2024

ePosterNeuroscience

From action observation to brain-to-brain social interaction: An EEG µ rhythms scalable design

Francisco Parada, Aitana Grasso-Cladera

FENS Forum 2024

ePosterNeuroscience

Neonatal handling age-dependently modulates social interaction, prepulse inhibition, and frontocortical expression of synaptic and neuroplasticity markers in a genetic rat model of schizophrenia-relevant features

Natalia Peralta, Toni Cañete, Daniel Sampedro-Viana, Adolf Tobeña, Ignasi Oliveras, Cristóbal Río-Álamos, Susana Aznar, Alberto Fernández-Teruel

FENS Forum 2024

ePosterNeuroscience

Observation of social and non-social interactions in dogs and humans: Results from fMRI and eyetracking

Catherine-Noémie Alexandrina Guran

FENS Forum 2024

ePosterNeuroscience

Psychophysiological correlates of social interactions: Implications for social anxiety

Lucia De Francesco, Selene Dorin, MariaTeresa Migliano, Alessia Podo, Alessandro Mazza, Olga Dal Monte

FENS Forum 2024

ePosterNeuroscience

The role of the prelimbic cortex in transition from out-group to in-group social interactions

Anjaly Yadav, Maria Kalinowska, Mateusz Rycerz, Fahmida Haque, Anna Bryksa, Alicia Puścian

FENS Forum 2024

ePosterNeuroscience

Subthalamic nucleus optogenetic inhibition reduces motivation for social interactions

Lucie Vignal, Mehdi Bancilhon, Cassandre Vielle, Yann Pelloux, Nicolas Maurice, Christelle Baunez

FENS Forum 2024

ePosterNeuroscience

Using muscimol and in vivo electrophysiological recordings to unveil the role of the deep cerebellar nuclei on social interaction behaviors in mice

Yi-Ting Lin, Wen-Sung Lai

FENS Forum 2024

ePosterNeuroscience

A trained humanoid robot can perform human-like crossmodal attention and social interaction

Di Fu

Neuromatch 5

social interaction coverage

43 items

Seminar30
ePoster13
Domain spotlight

Explore how social interaction research is advancing inside Neuro.

Visit domain