TopicNeuroscience

social processing

Content Overview
4Total items
3Seminars
1ePoster

Latest

SeminarNeuroscience

OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis

Michael Demidenko
Stanford University
Aug 1, 2025

In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.

SeminarNeuroscience

From agents, to actions, to interactions, to societies: primates' brain networks for social processing

Julia Sliwa
ICM Institute for Brain and Spinal Cord, Paris, France
Oct 10, 2022
SeminarNeuroscienceRecording

Neural Circuit Mechanisms of Emotional and Social Processing

Kay Tye
University of California, San Diego
Jun 5, 2020

How does our brain rapidly determine if something is good or bad? How do we know our place within a social group? How do we know how to behave appropriately in dynamic environments with ever-changing conditions? The Tye Lab is interested in understanding how neural circuits important for driving positive and negative motivational valence (seeking pleasure or avoiding punishment) are anatomically, genetically and functionally arranged. We study the neural mechanisms that underlie a wide range of behaviours ranging from learned to innate, including social, feeding, reward-seeking and anxiety-related behaviours. We have also become interested in “social homeostasis” -- how our brains establish a preferred set-point for social contact, and how this maintains stability within a social group. How are these circuits interconnected with one another, and how are competing mechanisms orchestrated on a neural population level? We employ optogenetic, electrophysiological, electrochemical, pharmacological and imaging approaches to probe these circuits during behaviour.

ePosterNeuroscience

Behavioral regression in Syn II KO mice: From latent synaptopathy to overt dysfunctions in multisensory social processing

Lorenzo Ciano, Sebastian Sulis Sato, Alessandro Esposito, Anna Fassio, Fabio Benfenati, Caterina Michetti

FENS Forum 2024

social processing coverage

4 items

Seminar3
ePoster1

Share your knowledge

Know something about social processing? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how social processing research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.