somatostatin
Latest
Optimising spiking interneuron circuits for compartment-specific feedback
Cortical circuits process information by rich recurrent interactions between excitatory neurons and inhibitory interneurons. One of the prime functions of interneurons is to stabilize the circuit by feedback inhibition, but the level of specificity on which inhibitory feedback operates is not fully resolved. We hypothesized that inhibitory circuits could enable separate feedback control loops for different synaptic input streams, by means of specific feedback inhibition to different neuronal compartments. To investigate this hypothesis, we adopted an optimization approach. Leveraging recent advances in training spiking network models, we optimized the connectivity and short-term plasticity of interneuron circuits for compartment-specific feedback inhibition onto pyramidal neurons. Over the course of the optimization, the interneurons diversified into two classes that resembled parvalbumin (PV) and somatostatin (SST) expressing interneurons. The resulting circuit can be understood as a neural decoder that inverts the nonlinear biophysical computations performed within the pyramidal cells. Our model provides a proof of concept for studying structure-function relations in cortical circuits by a combination of gradient-based optimization and biologically plausible phenomenological models
Circuit mechanisms for synaptic plasticity in the rodent somatosensory cortex
Sensory experience and perceptual learning changes receptive field properties of cortical pyramidal neurons possibly mediated by long-term potentiation (LTP) of synapses. We have previously shown in the mouse somatosensory cortex (S1) that sensory-driven LTP in layer (L) 2/3 pyramidal neurons is dependent on higher order thalamic feedback from the posteromedial nucleus (POm), which is thought to convey contextual information from various cortical regions integrated with sensory input. We have followed up on this work by dissecting the cortical microcircuitry that underlies this form of LTP. We found that repeated pairing of Pom thalamocortical and intracortical pathway activity in brain slices induces NMDAr-dependent LTP of the L2/3 synapses that are driven by the intracortical pathway. Repeated pairing also recruits activity of vasoactive intestinal peptide (VIP) interneurons, whereas it reduces the activity of somatostatin (SST) interneurons. VIP interneuron-mediated inhibition of SST interneurons has been established as a motif for the disinhibition of pyramidal neurons. By chemogenetic interrogation we found that activation of this disinhibitory microcircuit motif by higher-order thalamic feedback is indispensable for eliciting LTP. Preliminary results in vivo suggest that VIP neuron activity also increases during sensory-evoked LTP. Together, this suggests that the higherorder thalamocortical feedback may help modifying the strength of synaptic circuits that process first-order sensory information in S1. To start characterizing the relationship between higher-order feedback and cortical plasticity during learning in vivo, we adapted a perceptual learning paradigm in which head-fixed mice have to discriminate two types of textures in order to obtain a reward. POm axons or L2/3 pyramidal neurons labeled with the genetically encoded calcium indicator GCaMP6s were imaged during the acquisition of this task as well as the subsequent learning of a new discrimination rule. We found that a subpopulation of the POm axons and L2/3 neurons dynamically represent textures. Moreover, upon a change in reward contingencies, a fraction of the L2/3 neurons re-tune their selectivity to the texture that is newly associated with the reward. Altogether, our data indicates that higher-order thalamic feedback can facilitate synaptic plasticity and may be implicated in dynamic sensory stimulus representations in S1, which depends on higher-order features that are associated with the stimuli.
Inhibitory neural circuit mechanisms underlying neural coding of sensory information in the neocortex
Neural codes, such as temporal codes (precisely timed spikes) and rate codes (instantaneous spike firing rates), are believed to be used in encoding sensory information into spike trains of cortical neurons. Temporal and rate codes co-exist in the spike train and such multiplexed neural code-carrying spike trains have been shown to be spatially synchronized in multiple neurons across different cortical layers during sensory information processing. Inhibition is suggested to promote such synchronization, but it is unclear whether distinct subtypes of interneurons make different contributions in the synchronization of multiplexed neural codes. To test this, in vivo single-unit recordings from barrel cortex were combined with optogenetic manipulations to determine the contributions of parvalbumin (PV)- and somatostatin (SST)-positive interneurons to synchronization of precisely timed spike sequences. We found that PV interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are low (<12 Hz), whereas SST interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are high (>12 Hz). Furthermore, using a computational model, we demonstrate that these effects can be explained by PV and SST interneurons having preferential contribution to feedforward and feedback inhibition, respectively. Overall, these results show that PV and SST interneurons have distinct frequency (rate code)-selective roles in dynamically gating the synchronization of spike times (temporal code) through preferentially recruiting feedforward and feedback inhibitory circuit motifs. The inhibitory neural circuit mechanisms we uncovered here his may have critical roles in regulating neural code-based somatosensory information processing in the neocortex.
Self-organisation in interneuron circuits
Inhibitory interneurons come in different classes and form intricate circuits. While our knowledge of these circuits has advanced substantially over the last decades, it is not fully understood how the structure of these circuits relates to their function. I will present some of our recent attempts to “understand” the structure of interneuron circuits by means of computational modeling. Surprisingly (at least for us), we found that prominent features of inhibitory circuitry can be accounted for by an optimisation for excitation-inhibition (E/I) balance. In particular, we find that such an optimisation generates networks that resemble mouse V1 in terms of the structure of synaptic efficacies between principal cells and parvalbumin-positive interneurons. Moreover, an optimisation for E/I balance across neuronal compartments promotes a functional diversification of interneurons into two classes that resemble parvalbumin and somatostatin-positive interneurons. Time permitting, I may briefly touch on recent work in which we link E/I balance to prediction error coding in V1.
The integration of parvalbumin and somatostatin interneurons into cortical networks:both nature and nurture
Circuit and synaptic mechanisms of plasticity in neural ensembles
Inhibitory microcircuits play an important role regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration are gatekeepers for neural activity, synaptic plasticity and the formation of sensory representations. We have been investigating the synaptic plasticity mechanisms underlying the formation of ensembles in olfactory and orbitofrontal cortex. We have been focusing on the roles of three inhibitory neuron classes in gating excitatory synaptic plasticity in olfactory cortex- somatostatin (SST-INs), parvalbumin (PV-INs), and vasoactive intestinal polypeptide (VIP-INs) interneurons. Further, we are investigating the rules for inhibitory plasticity and a potential role in stabilizing ensembles in associative cortices. I will present new findings to support distinct roles for different interneuron classes in the gating and stabilization of ensemble representations of olfactory responses.
Activation of somatostatin interneurons in the medial amygdala reverses long-term aggressive behavior associated with early-life stress in male mice
FENS Forum 2024
Autocrine and paracrine action of somatostatin released by O-LM interneurons on the CA1 feedback circuit
FENS Forum 2024
Deficit of parvalbumin-positive interneurons and overfunction of somatostatin-positive interneurons are involved in the hippocampus-dependent cognitive impairment of the Ts65Dn mouse model of Down syndrome
FENS Forum 2024
Fear memory recall via hippocampal somatostatin interneurons
FENS Forum 2024
Functional expression of inhibitory glycinergic neurotransmission onto somatostatin positive neurons in the ventral pallidum
FENS Forum 2024
Impact of Lis1 mutation on the development of somatostatin-positive interneurons in the cingulate cortex
FENS Forum 2024
The intrinsic properties of somatostatin interneurons in a Mecp2-deficient mouse model of Rett syndrome
FENS Forum 2024
Investigating the recruitment of parvalbumin and somatostatin interneurons into engrams for associative recognition memory
FENS Forum 2024
Logic of the spatial and functional organization of the cortico-striatal projections onto somatostatin and parvalbumin interneurons in the dorsal striatum of mice
FENS Forum 2024
mGluR5-mediated deactivation of mPFC via somatostatin-positive interneuron in neuropathic pain mice
FENS Forum 2024
Neural plasticity in somatostatin-expressing interneurons to suppress cocaine-seeking behaviour
FENS Forum 2024
Neurotensin and somatostatin cells of lateral septum are involved in the complementary regulation of social and feeding behaviors
FENS Forum 2024
Pattern completion of contextual fear memory: Modulation by hippocampal somatostatin-positive interneurons
FENS Forum 2024
The role of GPi-LHb somatostatin-expressing neurons in motor actions and motivation
FENS Forum 2024
SHANK3 deficiency leads to GABAergic abnormalities and morphological changes in somatostatin-expressing interneurons in olfactory brain regions
FENS Forum 2024
Synaptic and dendritic architecture of different types of hippocampal somatostatin interneurons
FENS Forum 2024
somatostatin coverage
22 items