TopicNeuro

spike sorting

3 Seminars3 ePosters

Latest

SeminarNeuroscienceRecording

State-of-the-Art Spike Sorting with SpikeInterface

Samuel Garcia and Alessio Buccino
CRNS, Lyon, France and Allen Institute for Neural Dynamics, Seattle, USA
Nov 7, 2023

This webinar will focus on spike sorting analysis with SpikeInterface, an open-source framework for the analysis of extracellular electrophysiology data. After a brief introduction of the project (~30 mins) highlighting the basics of the SpikeInterface software and advanced features (e.g., data compression, quality metrics, drift correction, cloud visualization), we will have an extensive hands-on tutorial (~90 mins) showing how to use SpikeInterface in a real-world scenario. After attending the webinar, you will: (1) have a global overview of the different steps involved in a processing pipeline; (2) know how to write a complete analysis pipeline with SpikeInterface.

SeminarNeuroscience

Understanding neural dynamics in high dimensions across multiple timescales: from perception to motor control and learning

Surya Ganguli
Neural Dynamics & Computation Lab, Stanford University
Jun 17, 2021

Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition. However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling. We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process. In particular we will discuss: (1) how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; (2) how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; (3) deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; (4) algorithmic approaches for simplifying deep network models of perception; (5) optimality approaches to explain cell-type diversity in the first steps of vision in the retina.

SeminarNeuroscienceRecording

Theoretical and computational approaches to neuroscience with complex models in high dimensions across multiple timescales: from perception to motor control and learning

Surya Ganguli
Stanford University
Oct 16, 2020

Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition.  However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling.  We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process.  In particular we will discuss: how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; algorithmic approaches for simplifying deep network models of perception; optimality approaches to explain cell-type diversity in the first steps of vision in the retina.

ePosterNeuroscience

Automatic spike sorting correction and burst detection for high-density electrophysiological recordings

Sai Susheel Koukuntla, Timothy Harris, Adam Charles

COSYNE 2023

ePosterNeuroscience

UnitRefine: A community toolbox for automated spike sorting curation

Anoushka Jain, Matthias Hennig, Simon Musall, Robyn Greene, Federico Suprio, Jake Swann, Chris Halcrow, Alexander Kleinjohann, Severin Graff, Juergen Gall, Bjorn Kampa, Sonja Grun, Alessio Buccino

COSYNE 2025

ePosterNeuroscience

Automatized curation of spike sorting clusters

Anoushka Jain, Kleinjohann Alexander, Federico Spurio, Severin Graff, Björn Kampa, Jurgen Gall, Sonja Grün, Simon Musall

FENS Forum 2024

spike sorting coverage

6 items

Seminar3
ePoster3
Domain spotlight

Explore how spike sorting research is advancing inside Neuro.

Visit domain