STDP
Latest
Learning and Memory
This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.
Optimization at the Single Neuron Level: Prediction of Spike Sequences and Emergence of Synaptic Plasticity Mechanisms
Intelligent behavior depends on the brain’s ability to anticipate future events. However, the learning rules that enable neurons to predict and fire ahead of sensory inputs remain largely unknown. We propose a plasticity rule based on pre-dictive processing, where the neuron learns a low-rank model of the synaptic input dynamics in its membrane potential. Neurons thereby amplify those synapses that maximally predict other synaptic inputs based on their temporal relations, which provide a solution to an optimization problem that can be implemented at the single-neuron level using only local information. Consequently, neurons learn sequences over long timescales and shift their spikes towards the first inputs in a sequence. We show that this mechanism can explain the development of anticipatory motion signaling and recall in the visual system. Furthermore, we demonstrate that the learning rule gives rise to several experimentally observed STDP (spike-timing-dependent plasticity) mechanisms. These findings suggest prediction as a guiding principle to orchestrate learning and synaptic plasticity in single neurons.
A nonlinear shot noise model for calcium-based synaptic plasticity
Activity dependent synaptic plasticity is considered to be a primary mechanism underlying learning and memory. Yet it is unclear whether plasticity rules such as STDP measured in vitro apply in vivo. Network models with STDP predict that activity patterns (e.g., place-cell spatial selectivity) should change much faster than observed experimentally. We address this gap by investigating a nonlinear calcium-based plasticity rule fit to experiments done in physiological conditions. In this model, LTP and LTD result from intracellular calcium transients arising almost exclusively from synchronous coactivation of pre- and postsynaptic neurons. We analytically approximate the full distribution of nonlinear calcium transients as a function of pre- and postsynaptic firing rates, and temporal correlations. This analysis directly relates activity statistics that can be measured in vivo to the changes in synaptic efficacy they cause. Our results highlight that both high-firing rates and temporal correlations can lead to significant changes to synaptic efficacy. Using a mean-field theory, we show that the nonlinear plasticity rule, without any fine-tuning, gives a stable, unimodal synaptic weight distribution characterized by many strong synapses which remain stable over long periods of time, consistent with electrophysiological and behavioral studies. Moreover, our theory explains how memories encoded by strong synapses can be preferentially stabilized by the plasticity rule. We confirmed our analytical results in a spiking recurrent network. Interestingly, although most synapses are weak and undergo rapid turnover, the fraction of strong synapses are sufficient for supporting realistic spiking dynamics and serve to maintain the network’s cluster structure. Our results provide a mechanistic understanding of how stable memories may emerge on the behavioral level from an STDP rule measured in physiological conditions. Furthermore, the plasticity rule we investigate is mathematically equivalent to other learning rules which rely on the statistics of coincidences, so we expect that our formalism will be useful to study other learning processes beyond the calcium-based plasticity rule.
NMC4 Short Talk: Systematic exploration of neuron type differences in standard plasticity protocols employing a novel pathway based plasticity rule
Spike Timing Dependent Plasticity (STDP) is argued to modulate synaptic strength depending on the timing of pre- and postsynaptic spikes. Physiological experiments identified a variety of temporal kernels: Hebbian, anti-Hebbian and symmetrical LTP/LTD. In this work we present a novel plasticity model, the Voltage-Dependent Pathway Model (VDP), which is able to replicate those distinct kernel types and intermediate versions with varying LTP/LTD ratios and symmetry features. In addition, unlike previous models it retains these characteristics for different neuron models, which allows for comparison of plasticity in different neuron types. The plastic updates depend on the relative strength and activation of separately modeled LTP and LTD pathways, which are modulated by glutamate release and postsynaptic voltage. We used the 15 neuron type parametrizations in the GLIF5 model presented by Teeter et al. (2018) in combination with the VDP to simulate a range of standard plasticity protocols including standard STDP experiments, frequency dependency experiments and low frequency stimulation protocols. Slight variation in kernel stability and frequency effects can be identified between the neuron types, suggesting that the neuron type may have an effect on the effective learning rule. This plasticity model builds a middle ground between biophysical and phenomenological models allowing not just for the combination with more complex and biophysical neuron models, but is also computationally efficient so can be used in network simulations. Therefore it offers the possibility to explore the functional role of the different kernel types and electrophysiological differences in heterogeneous networks in future work.
Error correction and reliability timescale in converging cortical networks
Rapidly changing inputs such as visual scenes and auditory landscapes are transmitted over several synaptic interfaces and perceived with little loss of detail, but individual neurons are typically “noisy” and cortico-cortical connections are typically “weak”. To understand how information embodied in spike train is transmitted in a lossless manner, we focus on a single synaptic interface: between pyramidal cells and putative interneurons. Using arbitrary white noise patterns injected intra-cortically as photocurrents to freely-moving mice, we find that directly-activated cells exhibit precision of several milliseconds, but post-synaptic, indirectly-activated cells exhibit higher precision. Considering multiple identical messages, the reliability of directly-activated cells peaks at a timescale of dozens of milliseconds, whereas indirectly-activated cells exhibit an order-of-magnitude faster timescale. Using data-driven modelling, we find that error correction is consistent with non-linear amplification of coincident spikes.
STDP and the transfer of rhythmic signals in the brain
Rhythmic activity in the brain has been reported in relation to a wide range of cognitive processes. Changes in the rhythmic activity have been related to pathological states. These observations raise the question of the origin of these rhythms: can the mechanisms responsible for generation of these rhythms and that allow the propagation of the rhythmic signal be acquired via a process of learning? In my talk I will focus on spike timing dependent plasticity (STDP) and examine under what conditions this unsupervised learning rule can facilitate the propagation of rhythmic activity downstream in the central nervous system. Next, the I will apply the theory of STDP to the whisker system and demonstrate how STDP can shape the distribution of preferred phases of firing in a downstream population. Interestingly, in both these cases STDP dynamics does not relax to a fixed-point solution, rather the synaptic weights remain dynamic. Nevertheless, STDP allows for the system to retain its functionality in the face of continuous remodeling of the entire synaptic population.
Distinct synaptic plasticity mechanisms determine the diversity of cortical responses during behavior
Spike trains recorded from the cortex of behaving animals can be complex, highly variable from trial to trial, and therefore challenging to interpret. A fraction of cells exhibit trial-averaged responses with obvious task-related features such as pure tone frequency tuning in auditory cortex. However, a substantial number of cells (including cells in primary sensory cortex) do not appear to fire in a task-related manner and are often neglected from analysis. We recently used a novel single-trial, spike-timing-based analysis to show that both classically responsive and non-classically responsive cortical neurons contain significant information about sensory stimuli and behavioral decisions suggesting that non-classically responsive cells may play an underappreciated role in perception and behavior. We now expand this investigation to explore the synaptic origins and potential contribution of these cells to network function. To do so, we trained a novel spiking recurrent neural network model that incorporates spike-timing-dependent plasticity (STDP) mechanisms to perform the same task as behaving animals. By leveraging excitatory and inhibitory plasticity rules this model reproduces neurons with response profiles that are consistent with previously published experimental data, including classically responsive and non-classically responsive neurons. We found that both classically responsive and non-classically responsive neurons encode behavioral variables in their spike times as seen in vivo. Interestingly, plasticity in excitatory-to-excitatory synapses increased the proportion of non-classically responsive neurons and may play a significant role in determining response profiles. Finally, our model also makes predictions about the synaptic origins of classically and non-classically responsive neurons which we can compare to in vivo whole-cell recordings taken from the auditory cortex of behaving animals. This approach successfully recapitulates heterogeneous response profiles measured from behaving animals and provides a powerful lens for exploring large-scale neuronal dynamics and the plasticity rules that shape them.
Mean Field Analysis of a Stochastic STDP model
Bernstein Conference 2024
Purely STDP-based learning of stable, overlapping assemblies
COSYNE 2022
Purely STDP-based learning of stable, overlapping assemblies
COSYNE 2022
Rapid approximation of successor representations with STDP and theta phase precession
COSYNE 2022
Rapid approximation of successor representations with STDP and theta phase precession
COSYNE 2022
Functional stability and recurrent STDP in rhythmogenesis
FENS Forum 2024
STDP coverage
13 items