TopicNeuroscience

stereopsis

Latest

SeminarNeuroscienceRecording

Seeing the world through moving photoreceptors - binocular photomechanical microsaccades give fruit fly hyperacute 3D-vision

Mikko Juusola
University of Sheffield
Aug 1, 2022

To move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors.

SeminarNeuroscienceRecording

How much depth do you see? It depends…

Laurie Wilcox
York University
Dec 7, 2021
SeminarNeuroscience

Stereo vision in humans and insects

Jenny Read
Newcastle University
May 12, 2021

Stereopsis – deriving information about distance by comparing views from two eyes – is widespread in vertebrates but so far known in only class of invertebrates, the praying mantids. Understanding stereopsis which has evolved independently in such a different nervous system promises to shed light on the constraints governing any stereo system. Behavioral experiments indicate that insect stereopsis is functionally very different from that studied in vertebrates. Vertebrate stereopsis depends on matching up the pattern of contrast in the two eyes; it works in static scenes, and may have evolved in order to break camouflage rather than to detect distances. Insect stereopsis matches up regions of the image where the luminance is changing; it is insensitive to the detailed pattern of contrast and operates to detect the distance to a moving target. Work from my lab has revealed a network of neurons within the mantis brain which are tuned to binocular disparity, including some that project to early visual areas. This is in contrast to previous theories which postulated that disparity was computed only at a single, late stage, where visual information is passed down to motor neurons. Thus, despite their very different properties, the underlying neural mechanisms supporting vertebrate and insect stereopsis may be computationally more similar than has been assumed.

SeminarNeuroscience

Stereo vision and prey detection in the praying mantis

Vivek Nityananda
Newcastle U
Feb 3, 2021

Praying mantises are the only insects known to have stereo vision. We used a comparative approach to determine how the mechanisms underlying stereopsis in mantises differ from those underlying primate stereo vision. By testing mantises with virtual 3D targets we showed that mantis stereopsis enables prey capture in complex scenes but the mechanisms underlying it differ from those underlying primate stereopsis. My talk will further discuss how stereopsis combines with second-order motion perception to enable the detection of camouflaged prey by mantises. The talk will highlight the benefits of a comparative approach towards understanding visual cognition.

stereopsis coverage

4 items

Seminar4

Share your knowledge

Know something about stereopsis? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how stereopsis research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.