structural MRI
Latest
Why is 7T MRI indispensable in epilepsy now?
Identifying a structural brain lesion on MRI is the most important factor that correlates with seizure freedom after surgery in patients suffering from drug-resistant focal epilepsy. By providing better image contrast and higher spatial resolution, structural MRI at 7 Tesla (7T) can lead to lesion detection in about 25% of patients presenting with negative MRI at lower fields. In addition to a better detection/delineation/phenotyping of epileptogenic lesions, higher signal at ultra-high field also facilitates more detailed analyses of several functional and molecular alterations of tissues, susceptible to detect epileptogenic properties even in absence of visible lesions. These advantages but also the technical challenges of 7T MRI in practice will be presented and discussed.
The Role of Cerebrovascular Pathology in Aging and Neurodegenerative Disease Populations
Late-life cognitive impairment and dementia are heterogeneous and multifactorial conditions driven by a combination of genetic, vascular, and lifestyle-related factors. More than 75% of patients with dementia have evidence of cerebrovascular pathology at autopsy. Cerebrovascular disease lesions can be detected on structural MRI and used as biomarkers to determine the extent of cerebrovascular pathology. These biomarkers are associated with cognitive difficulties and increase the risk of dementia for the same level of neurodegenerative pathology. Given that some of the risk factors for cerebrovascular disease are potentially modifiable, identifying the role of cerebrovascular pathology in aging and neurodegenerative disease populations opens a window for prevention of cognitive decline and dementia.
Cortical and subcortical grey matter micro-structure is associated with polygenic risk for schizophrenia
Background: Recent discovery of hundreds of common gene variants associated with schizophrenia has enabled polygenic risk scores (PRS) to be measured in the population. It is hypothesized that normal variation in genetic risk of schizophrenia should be associated with MRI changes in brain morphometry and tissue composition. Methods: We used the largest extant genome-wide association dataset (N = 69,369 cases and N = 236,642 healthy controls) to measure PRS for schizophrenia in a large sample of adults from the UK Biobank (Nmax = 29,878) who had multiple micro- and macro-structural MRI metrics measured at each of 180 cortical areas and seven subcortical structures. Linear mixed effect models were used to investigate associations between schizophrenia PRS and brain structure at global and regional scales, controlled for multiple comparisons. Results: Micro-structural phenotypes were more robustly associated with schizophrenia PRS than macro-structural phenotypes. Polygenic risk was significantly associated with reduced neurite density index (NDI) at global brain scale, at 149 cortical regions, and five subcortical structures. Other micro-structural parameters, e.g., fractional anisotropy, that were correlated with NDI were also significantly associated with schizophrenia PRS. Genetic effects on multiple MRI phenotypes were co-located in temporal, cingulate and prefrontal cortical areas, insula, and hippocampus. (Preprint: https://www.medrxiv.org/content/10.1101/2021.02.06.21251073v1)
Functional and microstructural MRI substrates of conserved memory in healthy ageing
FENS Forum 2024
Pre-operative structural MRI predicts cochlear therapy outcome in post-lingual deafness
FENS Forum 2024
structural MRI coverage
5 items