telencephalon
Latest
Chapter 3. The origin of jaws and paired fin
Leonard Maler will focus on a specialized caudal portion of the cerebellum of teleost fish whose structure and physiology has been especially well studies to the point that we now have detailed computational analyses of its function. Idoia Quintana-Urzainqui will talk about what sharks can tell us about the evolution of the telencephalon, mainly focusing on the evolutionary expansion of the pallium and how shark embryos can hold key information to interpret the origin of the developmental processes that triggered this phenomenon.
The evolutionary origins of cortical cell types
In the last 500 million years, the dorsal telencephalon changed like no other region of the vertebrate brain. Differences range from the six-layered neocortex of mammals, to the small three-layered cortex of reptiles, and the complete absence of lamination in birds. These anatomical differences have prompted endless discussions on the origins and evolution of the cerebral cortex. We have approached this problem from a cell type and transcriptomics perspective. This reveals a more granular picture, where different cell types and classes have followed independent trajectories of evolutionary change. In this presentation, I will discuss how the molecular analysis of cell types in the brains of turtles, lizards and amphibians is updating our views on the evolution of the cerebral cortex, and the new questions emerging from these results.
A population code for spatial representation in the larval zebrafish telencephalon
COSYNE 2023
Molecular, functional, and behavioral analysis of neuromodulatory networks in the zebrafish telencephalon
FENS Forum 2024
A population code for spatial representation in the larval zebrafish telencephalon
FENS Forum 2024
telencephalon coverage
5 items