TopicNeuro

temporal resolution

6 Seminars1 ePoster

Latest

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Paul Scotti
Dec 7, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812

SeminarNeuroscience

In vivo direct imaging of neuronal activity at high temporospatial resolution

Jang-Yeon Park
Sungkyunkwan University, Suwon, Korea
Jun 28, 2023

Advanced noninvasive neuroimaging methods provide valuable information on the brain function, but they have obvious pros and cons in terms of temporal and spatial resolution. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) effect provides good spatial resolution in the order of millimeters, but has a poor temporal resolution in the order of seconds due to slow hemodynamic responses to neuronal activation, providing indirect information on neuronal activity. In contrast, electroencephalography (EEG) and magnetoencephalography (MEG) provide excellent temporal resolution in the millisecond range, but spatial information is limited to centimeter scales. Therefore, there has been a longstanding demand for noninvasive brain imaging methods capable of detecting neuronal activity at both high temporal and spatial resolution. In this talk, I will introduce a novel approach that enables Direct Imaging of Neuronal Activity (DIANA) using MRI that can dynamically image neuronal spiking activity in milliseconds precision, achieved by data acquisition scheme of rapid 2D line scan synchronized with periodically applied functional stimuli. DIANA was demonstrated through in vivo mouse brain imaging on a 9.4T animal scanner during electrical whisker-pad stimulation. DIANA with milliseconds temporal resolution had high correlations with neuronal spike activities, which could also be applied in capturing the sequential propagation of neuronal activity along the thalamocortical pathway of brain networks. In terms of the contrast mechanism, DIANA was almost unaffected by hemodynamic responses, but was subject to changes in membrane potential-associated tissue relaxation times such as T2 relaxation time. DIANA is expected to break new ground in brain science by providing an in-depth understanding of the hierarchical functional organization of the brain, including the spatiotemporal dynamics of neural networks.

SeminarNeuroscienceRecording

Versatile treadmill system for measuring locomotion and neural activity in head-fixed mice

Rune Nguyen Rasmussen
University of Copenhagen
Dec 8, 2022

Here, we present a protocol for using a versatile treadmill system to measure locomotion and neural activity at high temporal resolution in head-fixed mice. We first describe the assembly of the treadmill system. We then detail surgical implantation of the headplate on the mouse skull, followed by habituation of mice to locomotion on the treadmill system. The system is compact, movable, and simple to synchronize with other data streams, making it ideal for monitoring brain activity in diverse behavioral frameworks. https://dx.doi.org/10.1016/j.xpro.2022.101701

SeminarNeuroscienceRecording

Time as its own representation? Exploring a link between timing of cognition and time perception

Ishan Singhal
Indian Institute of Technology, Kanpur
Sep 28, 2022

The way we represent and perceive time has crucial implications for studying temporality in conscious experience. Contrasting positions posit that temporal information is separately abstracted out like any other perceptual property, or that time is represented through representations having temporal properties themselves. To add to this debate, we investigated alterations in felt time in conditions where only conscious visual experience is altered while a bistable figure remains physically unchanged. In this talk, I will discuss two studies that we have done in relation to answering this question. In study 1, we investigated whether perceptual switches in fixed intervals altered felt time. In three experiments we showed that a break in visual experience (via a perceptual switch) also leads to a break in felt time. In study 2, we are currently looking at figure-ground perception in ambigous displays. Here, in experiment 1 we show that differences in flicker frequencies on ambigous regions can induce figure-ground segregation. To see if a reverse complementarity exists for felt time, we ask participants to view ambigous regions as figure/ground and show that they have different temporal resolutions for the same region based on whether it is seen as figure or background. Overall, the two studies provide evidence for temporal mirroring and isomorphism in visual experience, arguing for a link between the timing of experience and time perception.

SeminarNeuroscienceRecording

Interpreting the Mechanisms and Meaning of Sensorimotor Beta Rhythms with the Human Neocortical Neurosolver (HNN) Neural Modeling Software

Stephanie Jones
Brown University
Sep 8, 2021

Electro- and magneto-encephalography (EEG/MEG) are the leading methods to non-invasively record human neural dynamics with millisecond temporal resolution. However, it can be extremely difficult to infer the underlying cellular and circuit level origins of these macro-scale signals without simultaneous invasive recordings. This limits the translation of E/MEG into novel principles of information processing, or into new treatment modalities for neural pathologies. To address this need, we developed the Human Neocortical Neurosolver (HNN: https://hnn.brown/edu ), a new user-friendly neural modeling tool designed to help researchers and clinicians interpret human imaging data. A unique feature of HNN’s model is that it accounts for the biophysics generating the primary electric currents underlying such data, so simulation results are directly comparable to source localized data. HNN is being constructed with workflows of use to study some of the most commonly measured E/MEG signals including event related potentials, and low frequency brain rhythms. In this talk, I will give an overview of this new tool and describe an application to study the origin and meaning of 15-29Hz beta frequency oscillations, known to be important for sensory and motor function. Our data showed that in primary somatosensory cortex these oscillations emerge as transient high power ‘events’. Functionally relevant differences in averaged power reflected a difference in the number of high-power beta events per trial (“rate”), as opposed to changes in event amplitude or duration. These findings were consistent across detection and attention tasks in human MEG, and in local field potentials from mice performing a detection task. HNN modeling led to a new theory on the circuit origin of such beta events and suggested beta causally impacts perception through layer specific recruitment of cortical inhibition, with support from invasive recordings in animal models and high-resolution MEG in humans. In total, HNN provides an unpresented biophysically principled tool to link mechanism to meaning of human E/MEG signals.

ePosterNeuroscience

Somatosensory evoked BOLD signals with ultra-high temporal resolution

Sara Wesolek, Till Nierhaus, Felix Blankenburg

FENS Forum 2024

temporal resolution coverage

7 items

Seminar6
ePoster1
Domain spotlight

Explore how temporal resolution research is advancing inside Neuro.

Visit domain