TopicNeuroscience
Content Overview
10Total items
6ePosters
4Seminars

Latest

SeminarNeuroscience

Targeting thalamic circuits rescues motor and mood deficits in PD mice

Dheeraj Roy
Feng Lab, Broad Institute of MIT and Harvard
Feb 1, 2023

Although bradykinesia, tremor, and rigidity are hallmark motor defects in Parkinson’s disease (PD) patients, they also experience motor learning impairments and non-motor symptoms such as depression. The neural basis for these different PD symptoms are not well understood. While current treatments are effective for locomotion deficits in PD, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking. We found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN), and nucleus accumbens (NAc). While PF-->CPu and PF-->STN circuits are critical for locomotion and motor learning respectively, inhibition of the PF-->NAc circuit induced a depression-like state. While chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation at PF-->STN synapses restored motor learning behavior in PD model mice. Furthermore, activation of NAc-projecting PF neurons rescued depression-like PD phenotypes. Importantly, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.

SeminarNeuroscienceRecording

Distinct limbic-hypothalamic circuits for the generation of social behaviors

Takashi Yamaguchi
Lin lab, New York University
May 19, 2021

The main pillars of social behaviors involve (1) mating, where males copulate with female partners to reproduce, and (2) aggression, where males fight conspecific male competitors in territory guarding. Decades of study have identified two key regions in the hypothalamus, the medial preoptic nucleus (MPN) and the ventrolateral part of ventromedial hypothalamus (VMHvl) , that are essential for male sexual and aggressive behaviors, respectively. However, it remains ambiguous what area directs excitatory control of the hypothalamic activity and generates the initiation signal for social behaviors. Through neural tracing, in vivo optical recording and functional manipulations, we identified the estrogen receptor alpha (Esr1)-expressing cells in the posterior amygdala (PA) as a main source of excitatory inputs to the MPN and VMHvl, and key hubs in mating and fighting circuits in males. Importantly, two spatially-distinct populations in the PA regulate male sexual and aggressive behaviors, respectively. Moreover, these two subpopulations in the PA display differential molecular phenotypes, projection patterns and in vivo neural responses. Our work also observed the parallels between these social behavior circuits and basal ganglia circuits to control motivated behaviors, which Larry Swanson (2000) originally proposed based on extensive developmental and anatomical evidence.

SeminarNeuroscience

Nr4a1-mediated morphological adaptations in Ventral Pallidal projections to Mediodorsal Thalamus support cocaine intake and relapse-like behaviors

Michel Engeln
Institute of Neurodegenerative Diseases, University of Bordeaux, Bordeaux, France
Mar 19, 2021

Growing evidence suggests the ventral pallidum (VP) is critical for drug intake and seeking behaviors. Receiving dense projections from the nucleus accumbens as well as dopamine inputs from the midbrain, the VP plays a central role in the control of motivated behaviors. Repeated exposure to cocaine is known to alter VP neuronal firing and neurotransmission. Surprisingly, there is limited information on the molecular adaptations occurring in VP neurons following cocaine intake.To provide insights into cocaine-induced transcriptional alterations we performed RNA-sequencing on VP of mice following cocaine self-administration. Gene Ontology analysis pointed toward alterations in dendrite- and spinerelated genes. Subsequent transcriptional regulator analysis identified the transcription factor Nr4a1 as a common regulator for these sets of morphology-related genes.Consistent with the central role of the VP in reward, its neurons project to several key regions associated with cocaine-mediated behaviors. We thus assessed Nr4a1 expression levels in various projection populations.Following cocaine self-administration, VP neurons projecting to the mediodorsal thalamus (MDT) showed significantly increased Nr4a1 levels. To further investigate the role of Nr4a1 in cocaine intake and relapse, we bidirectionally manipulated its expression levels selectively in VP neurons projecting to the MDT. Increasing Nr4a1 levels resulted in enhanced relapse-like behaviors accompanied by a blockage of cocaine-induced spinogenesis.However, decreasing Nr4a1expression levels completely abolished cocaine intake and consequential relapse-like behaviors. Together, our preliminary findings suggest that drug-induced neuronal remodeling in pallido-thalamic circuits is critical for cocaine intake and relapse-like behaviors.

SeminarNeuroscience

Plasticity in hypothalamic circuits for oxytocin release

Silvana Valtcheva
NYU
Oct 21, 2020

Mammalian babies are “sensory traps” for parents. Various sensory cues from the newborn are tremendously efficient in triggering parental responses in caregivers. We recently showed that core aspects of maternal behavior such as pup retrieval in response to infant vocalizations rely on active learning of auditory cues from pups facilitated by the neurohormone oxytocin (OT). Release of OT from the hypothalamus might thus help induce recognition of different infant cues but it is unknown what sensory stimuli can activate OT neurons. I performed unprecedented in vivo whole-cell and cell-attached recordings from optically-identified OT neurons in awake dams. I found that OT neurons, but not other hypothalamic cells, increased their firing rate after playback of pup distress vocalizations. Using anatomical tracing approaches and channelrhodopsin-assisted circuit mapping, I identified the projections and brain areas (including inferior colliculus, auditory cortex, and posterior intralaminar thalamus) relaying auditory information about social sounds to OT neurons. In hypothalamic brain slices, when optogenetically stimulating thalamic afferences to mimic high-frequency thalamic discharge, observed in vivo during pup calls playback, I found that thalamic activity led to long-term depression of synaptic inhibition in OT neurons. This was mediated by postsynaptic NMDARs-induced internalization of GABAARs. Therefore, persistent activation of OT neurons following pup calls in vivo is likely mediated by disinhibition. This gain modulation of OT neurons by infant cries, may be important for sustaining motivation. Using a genetically-encoded OT sensor, I demonstrated that pup calls were efficient in triggering OT release in downstream motivational areas. When thalamus projections to hypothalamus were inhibited with chemogenetics, dams exhibited longer latencies to retrieve crying pups, suggesting that the thalamus-hypothalamus noncanonical auditory pathway may be a specific circuit for the detection of social sounds, important for disinhibiting OT neurons, gating OT release in downstream brain areas, and speeding up maternal behavior.

ePosterNeuroscience

Basal ganglia output and thalamic circuits for context dependent anticipation and action signaling

Mauricio Toro, Margarida Sousa, Sofia Castro e Almeida, Tiago Monteiro, Filipe Rodrigues, Margarida Pexirra, Joe Paton
ePosterNeuroscience

Hypothalamic circuits for female social behaviour: Investigating the role of PMv-DAT neurons

Antonio Dias, Susana Q. Lima
ePosterNeuroscience

Multimodal mapping of lateral hypothalamic circuits that mediate the regulatory metabolic functions of AgRP neurons

Paul N. Mirabella, Saskia Stenzel, Henning Fenselau
ePosterNeuroscience

The central role of hypothalamic circuits for anti-Parkinsonian effects of acupuncture

Ju-Young Oh, Hyowon Lee, Sun-Young Jang, Hyunjin Kim, Geunhong Park, Almas Serikov, Jae-Hwan Jang, Junyeop Kim, Seulkee Yang, Moonsun Sa, Sung Eun Lee, Young-Eun Han, Tae-Yeon Hwang, Sharon Jiyoon Jung, Hee Young Kim, Seung Eun Lee, Soo-Jin Oh, Jeongjin Kim, Jongpil Kim, Thomas J. McHugh, C. Justin Lee, Min-Ho Nam, Hi-Joon Park

FENS Forum 2024

ePosterNeuroscience

Imbalanced inhibition in prefrontal cortico-thalamic circuits via thalamic reticular nucleus

Ece Sakalar, David P. Collins, Kasra Manoocheri, Adam G. Carter

FENS Forum 2024

ePosterNeuroscience

Hypothalamic circuits regulating home-driven affective behaviors

Xiaoya Su, Bo Lei, Junyue He, Ao Wang, Yi Zhong

FENS Forum 2024

thalamic circuits coverage

10 items

ePoster6
Seminar4

Share your knowledge

Know something about thalamic circuits? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how thalamic circuits research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.