Type
Latest
Consciousness at the edge of chaos
Over the last 20 years, neuroimaging and electrophysiology techniques have become central to understanding the mechanisms that accompany loss and recovery of consciousness. Much of this research is performed in the context of healthy individuals with neurotypical brain dynamics. Yet, a true understanding of how consciousness emerges from the joint action of neurons has to account for how severely pathological brains, often showing phenotypes typical of unconsciousness, can nonetheless generate a subjective viewpoint. In this presentation, I will start from the context of Disorders of Consciousness and will discuss recent work aimed at finding generalizable signatures of consciousness that are reliable across a spectrum of brain electrophysiological phenotypes focusing in particular on the notion of edge-of-chaos criticality.
Spike train structure of cortical transcriptomic populations in vivo
The cortex comprises many neuronal types, which can be distinguished by their transcriptomes: the sets of genes they express. Little is known about the in vivo activity of these cell types, particularly as regards the structure of their spike trains, which might provide clues to cortical circuit function. To address this question, we used Neuropixels electrodes to record layer 5 excitatory populations in mouse V1, then transcriptomically identified the recorded cell types. To do so, we performed a subsequent recording of the same cells using 2-photon (2p) calcium imaging, identifying neurons between the two recording modalities by fingerprinting their responses to a “zebra noise” stimulus and estimating the path of the electrode through the 2p stack with a probabilistic method. We then cut brain slices and performed in situ transcriptomics to localize ~300 genes using coppaFISH3d, a new open source method, and aligned the transcriptomic data to the 2p stack. Analysis of the data is ongoing, and suggests substantial differences in spike time coordination between ET and IT neurons, as well as between transcriptomic subtypes of both these excitatory types.
Astrocytes: From Metabolism to Cognition
Different brain cell types exhibit distinct metabolic signatures that link energy economy to cellular function. Astrocytes and neurons, for instance, diverge dramatically in their reliance on glycolysis versus oxidative phosphorylation, underscoring that metabolic fuel efficiency is not uniform across cell types. A key factor shaping this divergence is the structural organization of the mitochondrial respiratory chain into supercomplexes. Specifically, complexes I (CI) and III (CIII) form a CI–CIII supercomplex, but the degree of this assembly varies by cell type. In neurons, CI is predominantly integrated into supercomplexes, resulting in highly efficient mitochondrial respiration and minimal reactive oxygen species (ROS) generation. Conversely, in astrocytes, a larger fraction of CI remains unassembled, freely existing apart from CIII, leading to reduced respiratory efficiency and elevated mitochondrial ROS production. Despite this apparent inefficiency, astrocytes boast a highly adaptable metabolism capable of responding to diverse stressors. Their looser CI–CIII organization allows for flexible ROS signaling, which activates antioxidant programs via transcription factors like Nrf2. This modular architecture enables astrocytes not only to balance energy production but also to support neuronal health and influence complex organismal behaviors.
Neurobiological constraints on learning: bug or feature?
Understanding how brains learn requires bridging evidence across scales—from behaviour and neural circuits to cells, synapses, and molecules. In our work, we use computational modelling and data analysis to explore how the physical properties of neurons and neural circuits constrain learning. These include limits imposed by brain wiring, energy availability, molecular noise, and the 3D structure of dendritic spines. In this talk I will describe one such project testing if wiring motifs from fly brain connectomes can improve performance of reservoir computers, a type of recurrent neural network. The hope is that these insights into brain learning will lead to improved learning algorithms for artificial systems.
Astrocytes release glutamate by regulated exocytosis in health and disease
Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.
Impact of High Fat Diet on Central Cardiac Circuits: When The Wanderer is Lost
Cardiac vagal motor drive originates in the brainstem's cardiac vagal motor neurons (CVNs). Despite well-established cardioinhibitory functions in health, our understanding of CVNs in disease is limited. There is a clear connection of cardiovascular regulation with metabolic and energy expenditure systems. Using high fat diet as a model, this talk will explore how metabolic dysfunction impacts the regulation of cardiac tissue through robust inhibition of CVNs. Specifically, it will present an often overlooked modality of inhibition, tonic gamma-aminobuytric acid (GABA) A-type neurotransmission using an array of techniques from single cell patch clamp electrophysiology to transgenic in vivo whole animal physiology. It also will highlight a unique interaction with the delta isoform of protein kinase C to facilitate GABA A-type receptor expression.
Neural architectures: what are they good for anyway?
The brain has a highly complex structure in terms of cell types and wiring between different regions. What is it for, if anything? I'll start this talk by asking what might an answer to this question even look like given that we can't run an alternative universe where our brains are structured differently. (Preview: we can do this with models!) I'll then talk about some of our work in two areas: (1) does the modular structure of the brain contribute to specialisation of function? (2) how do different cell types and architectures contribute to multimodal sensory processing?
Dimensionality reduction beyond neural subspaces
Over the past decade, neural representations have been studied from the lens of low-dimensional subspaces defined by the co-activation of neurons. However, this view has overlooked other forms of covarying structure in neural activity, including i) condition-specific high-dimensional neural sequences, and ii) representations that change over time due to learning or drift. In this talk, I will present a new framework that extends the classic view towards additional types of covariability that are not constrained to a fixed, low-dimensional subspace. In addition, I will present sliceTCA, a new tensor decomposition that captures and demixes these different types of covariability to reveal task-relevant structure in neural activity. Finally, I will close with some thoughts regarding the circuit mechanisms that could generate mixed covariability. Together this work points to a need to consider new possibilities for how neural populations encode sensory, cognitive, and behavioral variables beyond neural subspaces.
Contentopic mapping and object dimensionality - a novel understanding on the organization of object knowledge
Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. Here I put forth a novel understanding of how object knowledge is organized in the brain, by proposing that the organization of object knowledge follows key object-related dimensions, analogously to how sensory information is organized in the brain. Moreover, I will also put forth that this knowledge is topographically laid out in the cortical surface according to these object-related dimensions that code for different types of representational content – I call this contentopic mapping. I will show a combination of fMRI and behavioral data to support these hypotheses and present a principled way to explore the multidimensionality of object processing.
Mouse Motor Cortex Circuits and Roles in Oromanual Behavior
I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In one line of investigation, we take a bottom-up, cellularly oriented approach and use optogenetics, electrophysiology, and related slice-based methods to dissect cell-type-specific circuits of corticospinal and other neurons in forelimb motor cortex. In another, we take a top-down ethologically oriented approach and analyze the kinematics and cortical correlates of “oromanual” dexterity as mice handle food. I'll discuss recent progress on both fronts.
Pancreatic Opioids Regulate Ingestive and Metabolic Phenotypes
Sensory cognition
This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.
Understanding the complex behaviors of the ‘simple’ cerebellar circuit
Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.
Brain-Wide Compositionality and Learning Dynamics in Biological Agents
Biological agents continually reconcile the internal states of their brain circuits with incoming sensory and environmental evidence to evaluate when and how to act. The brains of biological agents, including animals and humans, exploit many evolutionary innovations, chiefly modularity—observable at the level of anatomically-defined brain regions, cortical layers, and cell types among others—that can be repurposed in a compositional manner to endow the animal with a highly flexible behavioral repertoire. Accordingly, their behaviors show their own modularity, yet such behavioral modules seldom correspond directly to traditional notions of modularity in brains. It remains unclear how to link neural and behavioral modularity in a compositional manner. We propose a comprehensive framework—compositional modes—to identify overarching compositionality spanning specialized submodules, such as brain regions. Our framework directly links the behavioral repertoire with distributed patterns of population activity, brain-wide, at multiple concurrent spatial and temporal scales. Using whole-brain recordings of zebrafish brains, we introduce an unsupervised pipeline based on neural network models, constrained by biological data, to reveal highly conserved compositional modes across individuals despite the naturalistic (spontaneous or task-independent) nature of their behaviors. These modes provided a scaffolding for other modes that account for the idiosyncratic behavior of each fish. We then demonstrate experimentally that compositional modes can be manipulated in a consistent manner by behavioral and pharmacological perturbations. Our results demonstrate that even natural behavior in different individuals can be decomposed and understood using a relatively small number of neurobehavioral modules—the compositional modes—and elucidate a compositional neural basis of behavior. This approach aligns with recent progress in understanding how reasoning capabilities and internal representational structures develop over the course of learning or training, offering insights into the modularity and flexibility in artificial and biological agents.
Clonal analysis at single cell level helps to understand neural crest development
Recent research on the neural crest has revealed the multipotency and plasticity of nerve-associated Schwann cell precursors, which can differentiate into diverse cell types, including parasympathetic neurons, neuroendocrine cells, and mesenchymal stem cells. These findings challenge the traditional view of peripheral nerves, highlighting their role as niches for migratory progenitor cells that contribute to tissue formation and regeneration.
Unmotivated bias
In this talk, I will explore how social affective biases arise even in the absence of motivational factors as an emergent outcome of the basic structure of social learning. In several studies, we found that initial negative interactions with some members of a group can cause subsequent avoidance of the entire group, and that this avoidance perpetuates stereotypes. Additional cognitive modeling discovered that approach and avoidance behavior based on biased beliefs not only influences the evaluative (positive or negative) impressions of group members, but also shapes the depth of the cognitive representations available to learn about individuals. In other words, people have richer cognitive representations of members of groups that are not avoided, akin to individualized vs group level categories. I will end presenting a series of multi-agent reinforcement learning simulations that demonstrate the emergence of these social-structural feedback loops in the development and maintenance of affective biases.
Metabolic-functional coupling of parvalbmunin-positive GABAergic interneurons in the injured and epileptic brain
Parvalbumin-positive GABAergic interneurons (PV-INs) provide inhibitory control of excitatory neuron activity, coordinate circuit function, and regulate behavior and cognition. PV-INs are uniquely susceptible to loss and dysfunction in traumatic brain injury (TBI) and epilepsy but the cause of this susceptibility is unknown. One hypothesis is that PV-INs use specialized metabolic systems to support their high-frequency action potential firing and that metabolic stress disrupts these systems, leading to their dysfunction and loss. Metabolism-based therapies can restore PV-IN function after injury in preclinical TBI models. Based on these findings, we hypothesize that (1) PV-INs are highly metabolically specialized, (2) these specializations are lost after TBI, and (3) restoring PV-IN metabolic specializations can improve PV-IN function as well as TBI-related outcomes. Using novel single-cell approaches, we can now quantify cell-type-specific metabolism in complex tissues to determine whether PV-IN metabolic dysfunction contributes to the pathophysiology of TBI.
Modeling human brain development and disease: the role of primary cilia
Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.
Cell-type-specific plasticity shapes neocortical dynamics for motor learning
How do cortical circuits acquire new dynamics that drive learned movements? This webinar will focus on mouse premotor cortex in relation to learned lick-timing and explore high-density electrophysiology using our silicon neural probes alongside region and cell-type-specific acute genetic manipulations of proteins required for synaptic plasticity.
Mitochondrial diversity in the mouse and human brain
The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.
Learning representations of specifics and generalities over time
There is a fundamental tension between storing discrete traces of individual experiences, which allows recall of particular moments in our past without interference, and extracting regularities across these experiences, which supports generalization and prediction in similar situations in the future. One influential proposal for how the brain resolves this tension is that it separates the processes anatomically into Complementary Learning Systems, with the hippocampus rapidly encoding individual episodes and the neocortex slowly extracting regularities over days, months, and years. But this does not explain our ability to learn and generalize from new regularities in our environment quickly, often within minutes. We have put forward a neural network model of the hippocampus that suggests that the hippocampus itself may contain complementary learning systems, with one pathway specializing in the rapid learning of regularities and a separate pathway handling the region’s classic episodic memory functions. This proposal has broad implications for how we learn and represent novel information of specific and generalized types, which we test across statistical learning, inference, and category learning paradigms. We also explore how this system interacts with slower-learning neocortical memory systems, with empirical and modeling investigations into how the hippocampus shapes neocortical representations during sleep. Together, the work helps us understand how structured information in our environment is initially encoded and how it then transforms over time.
How are the epileptogenesis clocks ticking?
The epileptogenesis process is associated with large-scale changes in gene expression, which contribute to the remodelling of brain networks permanently altering excitability. About 80% of the protein coding genes are under the influence of the circadian rhythms. These are 24-hour endogenous rhythms that determine a large number of daily changes in physiology and behavior in our bodies. In the brain, the master clock regulates a large number of pathways that are important during epileptogenesis and established-epilepsy, such as neurotransmission, synaptic homeostasis, inflammation, blood-brain barrier among others. In-depth mapping of the molecular basis of circadian timing in the brain is key for a complete understanding of the cellular and molecular events connecting genes to phenotypes.
Roles of inhibition in stabilizing and shaping the response of cortical networks
Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.
Distinctive features of experiential time: Duration, speed and event density
William James’s use of “time in passing” and “stream of thoughts” may be two sides of the same coin that emerge from the brain segmenting the continuous flow of information into discrete events. Departing from that idea, we investigated how the content of a realistic scene impacts two distinct temporal experiences: the felt duration and the speed of the passage of time. I will present you the results from an online study in which we used a well-established experimental paradigm, the temporal bisection task, which we extended to passage of time judgments. 164 participants classified seconds-long videos of naturalistic scenes as short or long (duration), or slow or fast (passage of time). Videos contained a varying number and type of events. We found that a large number of events lengthened subjective duration and accelerated the felt passage of time. Surprisingly, participants were also faster at estimating their felt passage of time compared to duration. The perception of duration heavily depended on objective duration, whereas the felt passage of time scaled with the rate of change. Altogether, our results support a possible dissociation of the mechanisms underlying the two temporal experiences.
Time perception in film viewing as a function of film editing
Filmmakers and editors have empirically developed techniques to ensure the spatiotemporal continuity of a film's narration. In terms of time, editing techniques (e.g., elliptical, overlapping, or cut minimization) allow for the manipulation of the perceived duration of events as they unfold on screen. More specifically, a scene can be edited to be time compressed, expanded, or real-time in terms of its perceived duration. Despite the consistent application of these techniques in filmmaking, their perceptual outcomes have not been experimentally validated. Given that viewing a film is experienced as a precise simulation of the physical world, the use of cinematic material to examine aspects of time perception allows for experimentation with high ecological validity, while filmmakers gain more insight on how empirically developed techniques influence viewers' time percept. Here, we investigated how such time manipulation techniques of an action affect a scene's perceived duration. Specifically, we presented videos depicting different actions (e.g., a woman talking on the phone), edited according to the techniques applied for temporal manipulation and asked participants to make verbal estimations of the presented scenes' perceived durations. Analysis of data revealed that the duration of expanded scenes was significantly overestimated as compared to that of compressed and real-time scenes, as was the duration of real-time scenes as compared to that of compressed scenes. Therefore, our results validate the empirical techniques applied for the modulation of a scene's perceived duration. We also found interactions on time estimates of scene type and editing technique as a function of the characteristics and the action of the scene presented. Thus, these findings add to the discussion that the content and characteristics of a scene, along with the editing technique applied, can also modulate perceived duration. Our findings are discussed by considering current timing frameworks, as well as attentional saliency algorithms measuring the visual saliency of the presented stimuli.
Molecular Characterization of Retinal Cell Types: Insights into Evolutionary Origins and Regional Specializations
Of glia and macrophages, signaling hubs in development and homeostasis
We are interested in the biology of macrophages, which represent the first line of defense against pathogens. In Drosophila, the embryonic hemocytes arise from the mesoderm whereas glial cells arise from multipotent precursors in the neurogenic region. These cell types represent, respectively, the macrophages located outside and within the nervous system (similar to vertebrate microglia). Thus, despite their different origin, hemocytes and glia display common functions. In addition, both cell types express the Glide/Gcm transcription factor, which plays an evolutionarily conserved role as an anti-inflammatory factor. Moreover, embryonic hemocytes play an evolutionarily conserved and fundamental role in development. The ability to migrate and to contact different tissues/organs most likely allow macrophages to function as signaling hubs. The function of macrophages beyond the recognition of the non-self calls for revisiting the biology of these heterogeneous and plastic cells in physiological and pathological conditions across evolution.
The Role of Spatial and Contextual Relations of real world objects in Interval Timing
In the real world, object arrangement follows a number of rules. Some of the rules pertain to the spatial relations between objects and scenes (i.e., syntactic rules) and others about the contextual relations (i.e., semantic rules). Research has shown that violation of semantic rules influences interval timing with the duration of scenes containing such violations to be overestimated as compared to scenes with no violations. However, no study has yet investigated whether both semantic and syntactic violations can affect timing in the same way. Furthermore, it is unclear whether the effect of scene violations on timing is due to attentional or other cognitive accounts. Using an oddball paradigm and real-world scenes with or without semantic and syntactic violations, we conducted two experiments on whether time dilation will be obtained in the presence of any type of scene violation and the role of attention in any such effect. Our results from Experiment 1 showed that time dilation indeed occurred in the presence of syntactic violations, while time compression was observed for semantic violations. In Experiment 2, we further investigated whether these estimations were driven by attentional accounts, by utilizing a contrast manipulation of the target objects. The results showed that an increased contrast led to duration overestimation for both semantic and syntactic oddballs. Together, our results indicate that scene violations differentially affect timing due to violation processing differences and, moreover, their effect on timing seems to be sensitive to attentional manipulations such as target contrast.
Memory: types and neuroanatomical basis
Cellular and genetic mechanisms of cerebral cortex folding
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding, both of which emerge during development. Over the last few years, work from my lab has shown that specific cellular and genetic mechanisms play central roles in cortex folding, particularly linked to neural stem and progenitor cells. Key mechanisms include high rates of neurogenesis, high abundance of basal Radial Glia Cells (bRGCs), and neuron migration, all of which are intertwined during development. We have also shown that primary cortical folds follow highly stereotyped patterns, defined by a spatial-temporal protomap of gene expression within germinal layers of the developing cortex. I will present recent findings from my laboratory revealing novel cellular and genetic mechanisms that regulate cortex expansion and folding. We have uncovered the contribution of epigenetic regulation to the establishment of the cortex folding protomap, modulating the expression levels of key transcription factors that control progenitor cell proliferation and cortex folding. At the single cell level, we have identified an unprecedented diversity of cortical progenitor cell classes in the ferret and human embryonic cortex. These are differentially enriched in gyrus versus sulcus regions and establish parallel cell lineages, not observed in mouse. Our findings show that genetic and epigenetic mechanisms in gyrencephalic species diversify cortical progenitor cell types and implement parallel cell linages, driving the expansion of neurogenesis and patterning cerebral cortex folds.
Piecing together the puzzle of emotional consciousness
Conscious emotional experiences are very rich in their nature, and can encompass anything ranging from the most intense panic when facing immediate threat, to the overwhelming love felt when meeting your newborn. It is then no surprise that capturing all aspects of emotional consciousness, such as intensity, valence, and bodily responses, into one theory has become the topic of much debate. Key questions in the field concern how we can actually measure emotions and which type of experiments can help us distill the neural correlates of emotional consciousness. In this talk I will give a brief overview of theories of emotional consciousness and where they disagree, after which I will dive into the evidence proposed to support these theories. Along the way I will discuss to what extent studying emotional consciousness is ‘special’ and will suggest several tools and experimental contrasts we have at our disposal to further our understanding on this intriguing topic.
Current and future trends in neuroimaging
With the advent of several different fMRI analysis tools and packages outside of the established ones (i.e., SPM, AFNI, and FSL), today's researcher may wonder what the best practices are for fMRI analysis. This talk will discuss some of the recent trends in neuroimaging, including design optimization and power analysis, standardized analysis pipelines such as fMRIPrep, and an overview of current recommendations for how to present neuroimaging results. Along the way we will discuss the balance between Type I and Type II errors with different correction mechanisms (e.g., Threshold-Free Cluster Enhancement and Equitable Thresholding and Clustering), as well as considerations for working with large open-access databases.
Event-related frequency adjustment (ERFA): A methodology for investigating neural entrainment
Neural entrainment has become a phenomenon of exceptional interest to neuroscience, given its involvement in rhythm perception, production, and overt synchronized behavior. Yet, traditional methods fail to quantify neural entrainment due to a misalignment with its fundamental definition (e.g., see Novembre and Iannetti, 2018; Rajandran and Schupp, 2019). The definition of entrainment assumes that endogenous oscillatory brain activity undergoes dynamic frequency adjustments to synchronize with environmental rhythms (Lakatos et al., 2019). Following this definition, we recently developed a method sensitive to this process. Our aim was to isolate from the electroencephalographic (EEG) signal an oscillatory component that is attuned to the frequency of a rhythmic stimulation, hypothesizing that the oscillation would adaptively speed up and slow down to achieve stable synchronization over time. To induce and measure these adaptive changes in a controlled fashion, we developed the event-related frequency adjustment (ERFA) paradigm (Rosso et al., 2023). A total of twenty healthy participants took part in our study. They were instructed to tap their finger synchronously with an isochronous auditory metronome, which was unpredictably perturbed by phase-shifts and tempo-changes in both positive and negative directions across different experimental conditions. EEG was recorded during the task, and ERFA responses were quantified as changes in instantaneous frequency of the entrained component. Our results indicate that ERFAs track the stimulus dynamics in accordance with the perturbation type and direction, preferentially for a sensorimotor component. The clear and consistent patterns confirm that our method is sensitive to the process of frequency adjustment that defines neural entrainment. In this Virtual Journal Club, the discussion of our findings will be complemented by methodological insights beneficial to researchers in the fields of rhythm perception and production, as well as timing in general. We discuss the dos and don’ts of using instantaneous frequency to quantify oscillatory dynamics, the advantages of adopting a multivariate approach to source separation, the robustness against the confounder of responses evoked by periodic stimulation, and provide an overview of domains and concrete examples where the methodological framework can be applied.
Bio-realistic multiscale modeling of cortical circuits
A central question in neuroscience is how the structure of brain circuits determines their activity and function. To explore this systematically, we developed a 230,000-neuron model of mouse primary visual cortex (area V1). The model integrates a broad array of experimental data:Distribution and morpho-electric properties of different neuron types in V1.
Movements and engagement during decision-making
When experts are immersed in a task, a natural assumption is that their brains prioritize task-related activity. Accordingly, most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. Surprisingly, we observed that during decision-making, the cortex-wide activity of multiple cell types is dominated by movements, especially “uninstructed movements”, that are spontaneously expressed. These observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity. To understand the relationship between these movements and decision-making, we examined the movements more closely. We tested whether the magnitude or the timing of the movements was correlated with decision-making performance. To do this, we partitioned movements into two groups: task-aligned movements that were well predicted by task events (such as the onset of the sensory stimulus or choice) and task independent movement (TIM) that occurred independently of task events. TIM had a reliable, inverse correlation with performance in head-restrained mice and freely moving rats. This hinted that the timing of spontaneous movements could indicate periods of disengagement. To confirm this, we compared TIM to the latent behavioral states recovered by a hidden Markov model with Bernoulli generalized linear model observations (GLM-HMM) and found these, again, to be inversely correlated. Finally, we examined the impact of these behavioral states on neural activity. Surprisingly, we found that the same movement impacts neural activity more strongly when animals are disengaged. An intriguing possibility is that these larger movement signals disrupt cognitive computations, leading to poor decision-making performance. Taken together, these observations argue that movements and cognitionare closely intertwined, even during expert decision-making.
Metabolic Remodelling in the Developing Forebrain in Health and Disease
Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Motivated by the identification of autism-associated mutations in SLC7A5, a transporter for metabolically essential large neutral amino acids (LNAAs), we utilized metabolomic profiling to investigate the metabolic states of the cerebral cortex across various developmental stages. Our findings reveal significant metabolic restructuring occurring in the forebrain throughout development, with specific groups of metabolites exhibiting stage-specific changes. Through the manipulation of Slc7a5 expression in neural cells, we discovered an interconnected relationship between the metabolism of LNAAs and lipids within the cortex. Neuronal deletion of Slc7a5 influences the postnatal metabolic state, resulting in a shift in lipid metabolism and a cell-type-specific modification in neuronal activity patterns. This ultimately gives rise to enduring circuit dysfunction.
The melanopsin mosaic: exploring the diversity of non-image forming retinal ganglion cells
In this talk, I will focus on recent work that has uncovered the diversity of intrinsically photosensitive retinal ganglion cells (ipRGCs). These are a unique type of retinal ganglion cell that contains the photopigment melanopsin. ipRGCs are the retinal neurons responsible for driving non-imaging forming behaviors and reflexes, such as circadian entrainment and pupil constriction, amongst many others. My lab has recently focused on uncovering the diversity of ipRGCs, their distribution throughout the mammalian retina, and their axon projections in the brain.
The role of CNS microglia in health and disease
Microglia are the resident CNS macrophages of the brain parenchyma. They have many and opposing roles in health and disease, ranging from inflammatory to anti-inflammatory and protective functions, depending on the developmental stage and the disease context. In Multiple Sclerosis, microglia are involved to important hallmarks of the disease, such as inflammation, demyelination, axonal damage and remyelination, however the exact mechanisms controlling their transformation towards a protective or devastating phenotype during the disease progression remains largely unknown until now. We wish to understand how brain microglia respond to demyelinating insults and how their behaviour changes in recovery. To do so we developed a novel histopathological analysis approach in 3D and a cell-based analysis tool that when applied in the cuprizone model of demyelination revealed region- and disease- dependent changes in microglial dynamics in the brain grey matter during demyelination and remyelination. We now use similar approaches with the aim to unravel sensitive changes in microglial dynamics during neuroinflammation in the EAE model. Furthermore, we employ constitutive knockout and tamoxifen-inducible gene-targeting approaches, immunological techniques, genetics and bioinformatics and currently seek to clarify the specific role of the brain resident microglial NF-κB molecular pathway versus other tissue macrophages in EAE.
Vocal emotion perception at millisecond speed
The human voice is possibly the most important sound category in the social landscape. Compared to other non-verbal emotion signals, the voice is particularly effective in communicating emotions: it can carry information over large distances and independent of sight. However, the study of vocal emotion expression and perception is surprisingly far less developed than the study of emotion in faces. Thereby, its neural and functional correlates remain elusive. As the voice represents a dynamically changing auditory stimulus, temporally sensitive techniques such as the EEG are particularly informative. In this talk, the dynamic neurocognitive operations that take place when we listen to vocal emotions will be specified, with a focus on the effects of stimulus type, task demands, and speaker and listener characteristics (e.g., age). These studies suggest that emotional voice perception is not only a matter of how one speaks but also of who speaks and who listens. Implications of these findings for the understanding of psychiatric disorders such as schizophrenia will be discussed.
Spatial and Single Cell Genomics for Next Generation Neuroscience
The advent of next generation sequencing ushered in a ten-year period of exuberant technology development, enabling the quantification of gene expression and epigenetic features within individual cells, and within intact tissue sections. In this seminar, I will outline our technological contributions, beginning with the development of Drop-seq, a method for high-throughput single cell analysis, followed by the development of Slide-seq, a technique for measuring genome-wide expression at 10 micron spatial resolution. Using a combination of these techniques, we recently constructed a comprehensive cell type atlas of the adult mouse brain, positioning cell types within individual brain structures. I will discuss the major findings from this dataset, including emerging principles of neurotransmission, and the localization of disease gene signatures to specific cell types. Finally, I will introduce a new spatial technology, Slide-tags, that unifies single cell and spatial genomics into a single, highly scalable assay.
Location, time and type of epileptic activity influence how sleep modulates epilepsy
Sleep and epilepsy are tightly interconnected: On the one hand disturbed sleep is known to negatively affect epilepsy, whereas on the other hand epilepsy negatively impacts sleep. In this talk, we leverage on the unique opportunity provided by simultaneous stereo-EEG and sleep recordings to disentangle these relationships. We will discuss latest evidence on if anatomy (temporal vs. extratemporal), time (early vs. late sleep), and type of epileptic activity (ictal vs. interictal) influence how epileptic activity is modulated by sleep. After this talk, attendees will have a more nuanced understanding of the contributions of location, time and type of epileptic activity in the relationship between sleep and epilepsy.
How fly neurons compute the direction of visual motion
Detecting the direction of image motion is important for visual navigation, predator avoidance and prey capture, and thus essential for the survival of all animals that have eyes. However, the direction of motion is not explicitly represented at the level of the photoreceptors: it rather needs to be computed by subsequent neural circuits, involving a comparison of the signals from neighboring photoreceptors over time. The exact nature of this process represents a classic example of neural computation and has been a longstanding question in the field. Much progress has been made in recent years in the fruit fly Drosophila melanogaster by genetically targeting individual neuron types to block, activate or record from them. Our results obtained this way demonstrate that the local direction of motion is computed in two parallel ON and OFF pathways. Within each pathway, a retinotopic array of four direction-selective T4 (ON) and T5 (OFF) cells represents the four Cartesian components of local motion vectors (leftward, rightward, upward, downward). Since none of the presynaptic neurons is directionally selective, direction selectivity first emerges within T4 and T5 cells. Our present research focuses on the cellular and biophysical mechanisms by which the direction of image motion is computed in these neurons.
Doubting the neurofeedback double-blind do participants have residual awareness of experimental purposes in neurofeedback studies?
Neurofeedback provides a feedback display which is linked with on-going brain activity and thus allows self-regulation of neural activity in specific brain regions associated with certain cognitive functions and is considered a promising tool for clinical interventions. Recent reviews of neurofeedback have stressed the importance of applying the “double-blind” experimental design where critically the patient is unaware of the neurofeedback treatment condition. An important question then becomes; is double-blind even possible? Or are subjects aware of the purposes of the neurofeedback experiment? – this question is related to the issue of how we assess awareness or the absence of awareness to certain information in human subjects. Fortunately, methods have been developed which employ neurofeedback implicitly, where the subject is claimed to have no awareness of experimental purposes when performing the neurofeedback. Implicit neurofeedback is intriguing and controversial because it runs counter to the first neurofeedback study, which showed a link between awareness of being in a certain brain state and control of the neurofeedback-derived brain activity. Claiming that humans are unaware of a specific type of mental content is a notoriously difficult endeavor. For instance, what was long held as wholly unconscious phenomena, such as dreams or subliminal perception, have been overturned by more sensitive measures which show that degrees of awareness can be detected. In this talk, I will discuss whether we will critically examine the claim that we can know for certain that a neurofeedback experiment was performed in an unconscious manner. I will present evidence that in certain neurofeedback experiments such as manipulations of attention, participants display residual degrees of awareness of experimental contingencies to alter their cognition.
Comparative transcriptomics of retinal cell types
Freeze or flee ? New insights from rodent models of autism
Individuals afflicted with certain types of autism spectrum disorder often exhibit impaired cognitive function alongside enhanced emotional symptoms and mood lability. However, current understanding of the pathogenesis of autism and intellectual disabilities is based primarily on studies in the hippocampus and cortex, brain areas involved in cognitive function. But, these disorders are also associated with strong emotional symptoms, which are likely to involve changes in the amygdala and other brain areas. In this talk I will highlight these issues by presenting analyses in rat models of ASD/ID lacking Nlgn3 and Frm1 (causing Fragile X Syndrome). In addition to identifying new circuit and cellular alterations underlying divergent patterns of fear expression, these findings also suggest novel therapeutic strategies.
Epilepsy genetics 2023: From research to advanced clinical genetic test interpretation
The presentation will provide an overview of the expanding role of genetic factors in epilepsy. It will delve into the fundamentals of this field and elucidate how digital tools and resources can aid in the re-evaluation of genetic test results. In the initial segment of the presentation, Dr. Lal will examine the advancements made over the past two decades regarding the genetic architecture of various epilepsy types. Additionally, he will present research studies in which he has actively participated, offering concrete examples. Subsequently, during the second part of the talk, Dr. Lal will share the ongoing research projects that focus on epilepsy genetics, bioinformatics, and health record data science.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Immunosuppression for Parkinson's disease - a new therapeutic strategy?
Caroline Williams-Gray is a Principal Research Associate in the Department of Clinical Neurosciences, University of Cambridge, and an honorary consultant neurologist specializing in Parkinson’s disease and movement disorders. She leads a translational research group investigating the clinical and biological heterogeneity of PD, with the ultimate goal of developing more targeted therapies for different Parkinson’s subtypes. Her recent work has focused on the theory that the immune system plays a significant role in mediating the heterogeneity of PD and its progression. Her lab is investigating this using blood and CSF -based immune markers, PET neuroimaging and neuropathology in stratified PD cohorts; and she is leading the first randomized controlled trial repurposing a peripheral immunosuppressive drug (azathioprine) to slow the progression of PD.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Assigning credit through the "other” connectome
Learning in neural networks requires assigning the right values to thousands to trillions or more of individual connections, so that the network as a whole produces the desired behavior. Neuroscientists have gained insights into this “credit assignment” problem through decades of experimental, modeling, and theoretical studies. This has suggested key roles for synaptic eligibility traces and top-down feedback signals, among other factors. Here we study the potential contribution of another type of signaling that is being revealed in greater and greater fidelity by ongoing molecular and genomics studies. This is the set of modulatory pathways local to a given circuit, which form an intriguing second type of connectome overlayed on top of synaptic connectivity. We will share ongoing modeling and theoretical work that explores the possible roles of this local modulatory connectome in network learning.
A new framework for modeling innate capabilities in network with diverse types of spiking neurons: Probabilistic Skeleton
Bernstein Conference 2024
Knocking out co-active plasticity rules in neural networks reveals synapse type-specific contributions for learning and memory
Bernstein Conference 2024
Migraine mutation of a Na+ channel induces a switch in excitability type and energetically expensive spikes in an experimentally-constrained model of fast-spiking neurons
Bernstein Conference 2024
Top-down modulation shapes timescales via synaptic plasticity in cortical circuits with multiple interneuron types
Bernstein Conference 2024
Normative models of spatio-spectral decorrelation in natural scenes predict experimentally observed ratio of PR types
COSYNE 2022
Normative models of spatio-spectral decorrelation in natural scenes predict experimentally observed ratio of PR types
COSYNE 2022
Task demands drive choice of navigation strategy and distinct types of spatial representations
COSYNE 2022
Task demands drive choice of navigation strategy and distinct types of spatial representations
COSYNE 2022
Time-warped state space models for distinguishing movement type and vigor
COSYNE 2022
Time-warped state space models for distinguishing movement type and vigor
COSYNE 2022
Distinct transformations of perceptual sensitivity by inhibitory neuron subtypes in V1
COSYNE 2023
Functional Subtypes of Synaptic Dynamics Revealed by Model-based Classification
COSYNE 2023
Machine learning of functional network and molecular mechanisms in autism spectrum disorder subtypes
COSYNE 2023
Multi-modal composition of physiological signals to delineate candidate cell types in-vivo
COSYNE 2023
Only two types of attractors support representation of continuous variables, and learning over long time-spans
COSYNE 2023
Synaptic-type-specific clustering optimizes the computational capabilities of balanced recurrent networks
COSYNE 2023
Two types of locus coeruleus norepinephrine neurons drive reinforcement learning
COSYNE 2023
Computational specialization of cortical cell types
COSYNE 2025
Distinct roles of cortical layer 5 subtypes in associative learning
COSYNE 2025
Inhibitory cell-type-specific properties and transformations set up a unique depth-dependent temporal integration scheme in the human neocortical circuit
COSYNE 2025
Mapping functional differences across cell types using a group embedding-enhanced transformer
COSYNE 2025
Non-stereotyped Neural States in Canary HVC indicate song syntax plasticity
COSYNE 2025
State modulation in spatial networks with three interneuron subtypes
COSYNE 2025
Understanding the effects of neural perturbations using cell-type dynamical systems
COSYNE 2025
In vivo cell-type and brain region classification via multimodal contrastive learning
COSYNE 2025
AAV-mediated overexpression of wild-type human alpha-synuclein leads to alterations in gut microbiota in a ‘brain-first’ rat model of prodromal Parkinson’s disease
FENS Forum 2024
Achieving cell-type specific transduction with adeno-associated viral vectors in pigeons (Columba livia)
FENS Forum 2024
An activator of voltage-gated K+ channels Kv1.1 as a therapeutic candidate for episodic ataxia type 1
FENS Forum 2024
Adinazolam, a benzodiazepine-type new psychoactive substance, produces reinforcement and dependence in rodents
FENS Forum 2024
Aggression control by type 2 diabetes risk gene Dusp8
FENS Forum 2024
Alterations in GABA polarity contribute to changes in network activity in a model of focal cortical dysplasia type 2
FENS Forum 2024
Alterations in activity-regulated inhibitor of death gene expression in spinocerebellar ataxia type 2 and type 3
FENS Forum 2024
Antioxidant effect of combined administration of metformin and propionate in a rat model of type 2 diabetes mellitus
FENS Forum 2024
APOE genotype effects on the human gut microbiome
FENS Forum 2024
Assessment of Purkinje neuron degeneration in the flocculus vs. medial cerebellum in a mouse model of spinocerebellar ataxia type 13 (SCA13)
FENS Forum 2024
Atypical astrocytes in the aging brain: An underreported phenotype where downregulated membrane proteins disrupt glial regulated homeostatic capacities
FENS Forum 2024
Behavioural and neural influences of social partner’s motivational type on food preference
FENS Forum 2024
Boosting MFN2 levels in neurons using adeno-associated virus (AAV) vectors as a therapy for Charcot-Marie-Tooth disease type 2A
FENS Forum 2024
Cell- and layer-type specific intracortical effects of pulsed and continuous wave infrared neural stimulation revealed by high-density laminar recordings in the rat neocortex
FENS Forum 2024
Dendritic nonlinearities and synapse type-specific input clustering enable the development of input selectivity in a wide range of settings.
Bernstein Conference 2024
Type coverage
90 items