v2
Latest
Neuronal population interactions between brain areas
Most brain functions involve interactions among multiple, distinct areas or nuclei. Yet our understanding of how populations of neurons in interconnected brain areas communicate is in its infancy. Using a population approach, we found that interactions between early visual cortical areas (V1 and V2) occur through a low-dimensional bottleneck, termed a communication subspace. In this talk, I will focus on the statistical methods we have developed for studying interactions between brain areas. First, I will describe Delayed Latents Across Groups (DLAG), designed to disentangle concurrent, bi-directional (i.e., feedforward and feedback) interactions between areas. Second, I will describe an extension of DLAG applicable to three or more areas, and demonstrate its utility for studying simultaneous Neuropixels recordings in areas V1, V2, and V3. Our results provide a framework for understanding how neuronal population activity is gated and selectively routed across brain areas.
Trends in NeuroAI - Meta's MEG-to-image reconstruction
Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812
1.8 billion regressions to predict fMRI (journal club)
Public journal club where this week Mihir will present on the 1.8 billion regressions paper (https://www.biorxiv.org/content/10.1101/2022.03.28.485868v2), where the authors use hundreds of pretrained model embeddings to best predict fMRI activity.
A novel form of retinotopy in area V2 highlights location-dependent feature selectivity in the visual system
Topographic maps are a prominent feature of brain organization, reflecting local and large-scale representation of the sensory surface. Traditionally, such representations in early visual areas are conceived as retinotopic maps preserving ego-centric retinal spatial location while ensuring that other features of visual input are uniformly represented for every location in space. I will discuss our recent findings of a striking departure from this simple mapping in the secondary visual area (V2) of the tree shrew that is best described as a sinusoidal transformation of the visual field. This sinusoidal topography is ideal for achieving uniform coverage in an elongated area like V2 as predicted by mathematical models designed for wiring minimization, and provides a novel explanation for stripe-like patterns of intra-cortical connections and functional response properties in V2. Our findings suggest that cortical circuits flexibly implement solutions to sensory surface representation, with dramatic consequences for large-scale cortical organization. Furthermore our work challenges the framework of relatively independent encoding of location and features in the visual system, showing instead location-dependent feature sensitivity produced by specialized processing of different features in different spatial locations. In the second part of the talk, I will propose that location-dependent feature sensitivity is a fundamental organizing principle of the visual system that achieves efficient representation of positional regularities in visual input, and reflects the evolutionary selection of sensory and motor circuits to optimally represent behaviorally relevant information. The relevant papers can be found here: V2 retinotopy (Sedigh-Sarvestani et al. Neuron, 2021) Location-dependent feature sensitivity (Sedigh-Sarvestani et al. Under Review, 2022)
Dysfunctional synaptic vesicle recycling – links to epilepsy
Accurate and synchronous neurotransmitter release is essential for brain communication and occurs when neurotransmitter-containing synaptic vesicles (SVs) fuse to release their content in response to neuronal activity. Neurotransmission is sustained by the process of SV recycling, which generates SVs locally at the presynapse. Until relatively recently it was believed that most mutations in genes that were essential for SV recycling would be incompatible with life, due to this fundamental role. However, this is not the case, with mutations in essential genes for SV fusion, retrieval and recycling identified in individuals with epilepsy. This seminar will cover our laboratory’s progress in determining how genetic mutations in people with epilepsy translate into presynaptic dysfunction and ultimately into seizure activity. The principal focus of these studies will be in vitro investigations of, 1) the biological role of these gene products and 2) how their dysfunction impacts SV recycling, using live fluorescence imaging of genetically-encoded reporters. The gene products to be discussed in more detail will be the SV protein SV2A, the protein kinase CDKL5 and the translation repressor FMRP.
Mechanisms of CACNA1A-associated developmental epileptic encephalopathies
Developmental epileptic encephalopathies are early-onset epilepsies, often refractory to therapy, with developmental delay or regression. These disorders carry poor neurodevelopmental prognosis, with long-term refractory epilepsy and persistent cognitive, behavioral and motor deficits. Mutations in the CACNA1A gene, encoding the pore-forming α1 subunit of CaV2.1 voltage-gated calcium channels, result in a spectrum of neurological disorders, including severe, early-onset epileptic encephalopathies. Recent work from the Rossignol lab helped characterize the phenotypic spectrum of CACNA1A-related epilepsies in humans. Using conditional genetics and novel animal models, the Rossignol lab unveiled some of the underlying pathophysiological mechanisms, including critical deficits in cortical inhibition, resulting in seizures and a range of cognitive-behavioral deficits. Importantly, Dr. Rossignol’s team demonstrated that the targeted activation of specific GABAergic interneuron populations in selected cortical regions prevents motor seizures and reverts attention deficits and cognitive rigidity in mouse models of the disorder. These recent findings open novel avenues for the treatment of these severe CACNA1A-associated neurodevelopmental disorders.
Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism
To date, neuroimaging research has had a limited focus on non-social features of autism. As a result, neurobiological explanations for atypical sensory perception in autism are lacking. To address this, we quantitively condensed findings from the non-social autism fMRI literature in line with the current best practices for neuroimaging meta-analyses. Using activation likelihood estimation (ALE), we conducted a series of robust meta-analyses across 83 experiments from 52 fMRI studies investigating differences between autistic (n = 891) and typical (n = 967) participants. We found that typical controls, compared to autistic people, show greater activity in the prefrontal cortex (BA9, BA10) during perception tasks. More refined analyses revealed that, when compared to typical controls, autistic people show greater recruitment of the extrastriate V2 cortex (BA18) during visual processing. Taken together, these findings contribute to our understanding of current theories of autistic perception, and highlight some of the challenges of cognitive neuroscience research in autism.
Exploring feedforward and feedback communication between visual cortical areas with DLAG
Technological advances have increased the availability of recordings from large populations of neurons across multiple brain areas. Coupling these recordings with dimensionality reduction techniques, recent work has led to new proposals for how populations of neurons can send and receive signals selectively and flexibly. Advancement of these proposals depends, however, on untangling the bidirectional, parallel communication between neuronal populations. Because our current data analytic tools struggle to achieve this task, we have recently validated and presented a novel dimensionality reduction framework: DLAG, or Delayed Latents Across Groups. DLAG decomposes the time-varying activity in each area into within- and across-area latent variables. Across-area variables can be decomposed further into feedforward and feedback components using automatically estimated time delays. In this talk, I will review the DLAG framework. Then I will discuss new insights into the moment-by-moment nature of feedforward and feedback communication between visual cortical areas V1 and V2 of macaque monkeys. Overall, this work lays the foundation for dissecting the dynamic flow of signals across populations of neurons, and how it might change across brain areas and behavioral contexts.
Generation Covid-19: Should the fetus be worried?
Historically pregnant women and their unborn baby have been amongst those with the poorest outcomes in previous epidemics, most notably the Zika virus. For much of 2020, with the emergence of the novel coronavirus, the effect on the fetus remains unclear. While initial reports suggest that vertical transmission with SARS-CoV2 is reassuringly rare, the complex socioeconomic, domestic and broader maternal lifestyle factors which can influence a child’s lifelong well-being have been modulated during the experience of this pandemic. The developing brain is particularly susceptible to maternal stress, resulting in permanent structural changes and increased incidence of behavioural and mental health illness later in childhood. A large international longitudinal survey is being undertaken by the Department of Psychology to better understand the impact of the pandemic on those yet to be born.
Affine models explain tuning-dependent correlated variability within and between V1 and V2
COSYNE 2022
Feedforward and feedback computations in V1 and V2 in a hierarchical Variational Autoencoder
COSYNE 2022
Feedforward and feedback computations in V1 and V2 in a hierarchical Variational Autoencoder
COSYNE 2022
V2 builds a generalizable texture representation
COSYNE 2023
Cue-invariant geometric structure of the population codes in macaque V1 and V2
COSYNE 2025
Flexibility of signaling across and within visual cortical areas V1 and V2
COSYNE 2025
Alternative splicing of Cav2.1 EF-hand contributes to the tightness of calcium influx-neurotransmitter release coupling at mouse cerebellar synapses
FENS Forum 2024
Anatomo-functional diversity of medullary V2a neurons for limb and cranial nerve-mediated movements
FENS Forum 2024
Cav2.1 splice variants organize in nanodomains at presynaptic boutons where they differentially regulate synaptic vesicle release and synaptic facilitation
FENS Forum 2024
Disrupted nanoscale organization of GABAB receptors and CaV2.1 channels in the hippocampus of APP/PS1 mice
FENS Forum 2024
Dynamic TRPV2 localization by focal mechanical stimulation enhances growth cone motility
FENS Forum 2024
From anatomy to functions in locomotion: An optogenetic investigation on the organisation of V2a-derived reticulospinal neurons
FENS Forum 2024
Glycosylation of synaptic vesicle glycoprotein 2C (SV2C) in cellular trafficking: Impact on Parkinson's disease
FENS Forum 2024
Lhx4 surpasses Lhx3 to promote the differentiation of spinal V2a interneurons
FENS Forum 2024
Mechanisms of facilitation of cortical spreading depression in a genetic mouse model of migraine with a gain-of-function mutation in CaV2.1 channels
FENS Forum 2024
PPIase contributes to EA2-associated defective protein homeostasis of human CaV2.1 channel
FENS Forum 2024
Rostro-caudal control of locomotor steering strategies by V2a reticulospinal modules
FENS Forum 2024
Subcellular localization of the calcium channel Cav2.3 in cultured hippocampal neurons
FENS Forum 2024
Understanding CaV2.1 dysfunction in neurological disorders: Insights from novel CRISPR/Cas9 mouse model and iPSC-derived neurons
FENS Forum 2024
VSX1 expression in V2 precursor cells at embryological stages could be used to follow spared V2 interneurons after a traumatic injury in adulthood
FENS Forum 2024
v2 coverage
29 items