Validation
validation
Latest
OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis
In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
Brain network communication: concepts, models and applications
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
NMC4 Short Talk: Decoding finger movements from human posterior parietal cortex
Restoring hand function is a top priority for individuals with tetraplegia. This challenge motivates considerable research on brain-computer interfaces (BCIs), which bypass damaged neural pathways to control paralyzed or prosthetic limbs. Here, we demonstrate the BCI control of a prosthetic hand using intracortical recordings from the posterior parietal cortex (PPC). As part of an ongoing clinical trial, two participants with cervical spinal cord injury were each implanted with a 96-channel array in the left PPC. Across four sessions each, we recorded neural activity while they attempted to press individual fingers of the contralateral (right) hand. Single neurons modulated selectively for different finger movements. Offline, we accurately classified finger movements from neural firing rates using linear discriminant analysis (LDA) with cross-validation (accuracy = 90%; chance = 17%). Finally, the participants used the neural classifier online to control all five fingers of a BCI hand. Online control accuracy (86%; chance = 17%) exceeded previous state-of-the-art finger BCIs. Furthermore, offline, we could classify both flexion and extension of the right fingers, as well as flexion of all ten fingers. Our results indicate that neural recordings from PPC can be used to control prosthetic fingers, which may help contribute to a hand restoration strategy for people with tetraplegia.
Microbiota in the health of the nervous system and the response to stress
Microbes have shaped the evolution of eukaryotes and contribute significantly to the physiology and behavior of animals. Some of these traits are inherited by the progenies. Despite the vast importance of microbe-host communication, we still do not know how bacteria change short term traits or long-term decisions in individuals or communities. In this seminar I will present our work on how commensal and pathogenic bacteria impact specific neuronal phenotypes and decision making. The traits we specifically study are the degeneration and regeneration of neurons and survival behaviors in animals. We use the nematode Caenorhabditis elegans and its dietary bacteria as model organisms. Both nematode and bacteria are genetically tractable, simplifying the detection of specific molecules and their effect on measurable characteristics. To identify these molecules we analyze their genomes, transcriptomes and metabolomes, followed by functional in vivo validation. We found that specific bacterial RNAs and bacterially produced neurotransmitters are key to trigger a survival behavioral and neuronal protection respectively. While RNAs cause responses that lasts for many generations we are still investigating whether bacterial metabolites are capable of inducing long lasting phenotypic changes.
Digitization as a driving force for collaboration in neuroscience
Many of the collaborations we encounter in our scientific careers are centered on a common idea that can be associated with certain resources, such as a dataset, an algorithm, or a model. All partners in a collaboration need to develop a common understanding of these resources, and need to be able to access them in a simple and unambiguous manner in order to avoid incorrect conclusions especially in highly cross-disciplinary contexts. While digital computers have entered to assist scientific workflows in experiment and simulation for many decades, the high degree of heterogeneity in the field had led to a scattered landscape of highly customized, lab-internal solutions to organizing and managing the resources on a project-by-project basis. Only with the availability of modern technologies such as the semantic web, platforms for collaborative coding or the development of data standards overarching different disciplines, we have tools at our disposal to make resources increasingly more accessible, understandable, and usable. However, without overarching standardization efforts and adaptation of such technologies to the workflows and needs of individual researchers, their adoption by the neuroscience community will be impeded. From the perspective of computational neuroscience, which is inherently dependent on leveraging data and methods across the field of neuroscience for inspiration and validation, I will outline my view on past and present developments towards a more rigorous use of digital resources and how they improved collaboration, and introduce emerging initiatives to support this process in the future (e.g., EBRAINS http://ebrains.eu, NFDI-Neuro http://www.nfdi-neuro.de).
Hebbian learning, its inference, and brain oscillation
Despite the recent success of deep learning in artificial intelligence, the lack of biological plausibility and labeled data in natural learning still poses a challenge in understanding biological learning. At the other extreme lies Hebbian learning, the simplest local and unsupervised one, yet considered to be computationally less efficient. In this talk, I would introduce a novel method to infer the form of Hebbian learning from in vivo data. Applying the method to the data obtained from the monkey inferior temporal cortex for the recognition task indicates how Hebbian learning changes the dynamic properties of the circuits and may promote brain oscillation. Notably, recent electrophysiological data observed in rodent V1 showed that the effect of visual experience on direction selectivity was similar to that observed in monkey data and provided strong validation of asymmetric changes of feedforward and recurrent synaptic strengths inferred from monkey data. This may suggest a general learning principle underlying the same computation, such as familiarity detection across different features represented in different brain regions.
Cognitive Psychometrics: Statistical Modeling of Individual Differences in Latent Processes
Many psychological theories assume that qualitatively different cognitive processes can result in identical responses. Multinomial processing tree (MPT) models allow researchers to disentangle latent cognitive processes based on observed response frequencies. Recently, MPT models have been extended to explicitly account for participant and item heterogeneity. These hierarchical Bayesian MPT models provide the opportunity to connect two traditionally isolated disciplines. Whereas cognitive psychology has often focused on the experimental validation of MPT model parameters on the group level, psychometrics provides the necessary concepts and tools for measuring differences in MPT parameters on the item or person level. Moreover, MPT parameters can be regressed on covariates to model latent processes as a function of personality traits or other person characteristics.
Contextual inference underlies the learning of sensorimotor repertoires
Humans spend a lifetime learning, storing and refining a repertoire of motor memories. However, it is unknown what principle underlies the way our continuous stream of sensori-motor experience is segmented into separate memories and how we adapt and use this growing repertoire. Here we develop a principled theory of motor learning based on the key insight that memory creation, updating, and expression are all controlled by a single computation – contextual inference. Unlike dominant theories of single-context learning, our repertoire-learning model accounts for key features of motor learning that had no unified explanation and predicts novel phenomena, which we confirm experimentally. These results suggest that contextual inference is the key principle underlying how a diverse set of experiences is reflected in motor behavior.
validation coverage
13 items