← Back

Visual Cortex

Topic spotlight
TopicNeuro

visual cortex

Discover seminars, jobs, and research tagged with visual cortex across Neuro.
50 curated items50 Seminars
Updated 2 months ago
50 items · visual cortex

Latest

50 results
SeminarNeuroscienceRecording

Representational drift in human visual cortex

Zvi Roth
Bar-Ilan
Jul 1, 2025
SeminarNeuroscienceRecording

Restoring Sight to the Blind: Effects of Structural and Functional Plasticity

Noelle Stiles
Rutgers University
May 22, 2025

Visual restoration after decades of blindness is now becoming possible by means of retinal and cortical prostheses, as well as emerging stem cell and gene therapeutic approaches. After restoring visual perception, however, a key question remains. Are there optimal means and methods for retraining the visual cortex to process visual inputs, and for learning or relearning to “see”? Up to this point, it has been largely assumed that if the sensory loss is visual, then the rehabilitation focus should also be primarily visual. However, the other senses play a key role in visual rehabilitation due to the plastic repurposing of visual cortex during blindness by audition and somatosensation, and also to the reintegration of restored vision with the other senses. I will present multisensory neuroimaging results, cortical thickness changes, as well as behavioral outcomes for patients with Retinitis Pigmentosa (RP), which causes blindness by destroying photoreceptors in the retina. These patients have had their vision partially restored by the implantation of a retinal prosthesis, which electrically stimulates still viable retinal ganglion cells in the eye. Our multisensory and structural neuroimaging and behavioral results suggest a new, holistic concept of visual rehabilitation that leverages rather than neglects audition, somatosensation, and other sensory modalities.

SeminarNeuroscience

Vision for perception versus vision for action: dissociable contributions of visual sensory drives from primary visual cortex and superior colliculus neurons to orienting behaviors

Prof. Dr. Ziad M. Hafed
Werner Reichardt Center for Integrative Neuroscience, and Hertie Institute for Clinical Brain Research University of Tübingen
Feb 12, 2025

The primary visual cortex (V1) directly projects to the superior colliculus (SC) and is believed to provide sensory drive for eye movements. Consistent with this, a majority of saccade-related SC neurons also exhibit short-latency, stimulus-driven visual responses, which are additionally feature-tuned. However, direct neurophysiological comparisons of the visual response properties of the two anatomically-connected brain areas are surprisingly lacking, especially with respect to active looking behaviors. I will describe a series of experiments characterizing visual response properties in primate V1 and SC neurons, exploring feature dimensions like visual field location, spatial frequency, orientation, contrast, and luminance polarity. The results suggest a substantial, qualitative reformatting of SC visual responses when compared to V1. For example, SC visual response latencies are actively delayed, independent of individual neuron tuning preferences, as a function of increasing spatial frequency, and this phenomenon is directly correlated with saccadic reaction times. Such “coarse-to-fine” rank ordering of SC visual response latencies as a function of spatial frequency is much weaker in V1, suggesting a dissociation of V1 responses from saccade timing. Consistent with this, when we next explored trial-by-trial correlations of individual neurons’ visual response strengths and visual response latencies with saccadic reaction times, we found that most SC neurons exhibited, on a trial-by-trial basis, stronger and earlier visual responses for faster saccadic reaction times. Moreover, these correlations were substantially higher for visual-motor neurons in the intermediate and deep layers than for more superficial visual-only neurons. No such correlations existed systematically in V1. Thus, visual responses in SC and V1 serve fundamentally different roles in active vision: V1 jumpstarts sensing and image analysis, but SC jumpstarts moving. I will finish by demonstrating, using V1 reversible inactivation, that, despite reformatting of signals from V1 to the brainstem, V1 is still a necessary gateway for visually-driven oculomotor responses to occur, even for the most reflexive of eye movement phenomena. This is a fundamental difference from rodent studies demonstrating clear V1-independent processing in afferent visual pathways bypassing the geniculostriate one, and it demonstrates the importance of multi-species comparisons in the study of oculomotor control.

SeminarNeuroscience

Sensory cognition

SueYeon Chung, Srini Turaga
New York University; Janelia Research Campus
Nov 29, 2024

This webinar features presentations from SueYeon Chung (New York University) and Srinivas Turaga (HHMI Janelia Research Campus) on theoretical and computational approaches to sensory cognition. Chung introduced a “neural manifold” framework to capture how high-dimensional neural activity is structured into meaningful manifolds reflecting object representations. She demonstrated that manifold geometry—shaped by radius, dimensionality, and correlations—directly governs a population’s capacity for classifying or separating stimuli under nuisance variations. Applying these ideas as a data analysis tool, she showed how measuring object-manifold geometry can explain transformations along the ventral visual stream and suggested that manifold principles also yield better self-supervised neural network models resembling mammalian visual cortex. Turaga described simulating the entire fruit fly visual pathway using its connectome, modeling 64 key cell types in the optic lobe. His team’s systematic approach—combining sparse connectivity from electron microscopy with simple dynamical parameters—recapitulated known motion-selective responses and produced novel testable predictions. Together, these studies underscore the power of combining connectomic detail, task objectives, and geometric theories to unravel neural computations bridging from stimuli to cognitive functions.

SeminarNeuroscience

Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity

Attempto Prize Awardee I Roxana Zeraati
IMPRS-MMFD, MPI-BC & University of Tübingen
Oct 31, 2024
SeminarNeuroscience

Visual mechanisms for flexible behavior

Marlene Cohen
University of Chicago
Jan 26, 2024

Perhaps the most impressive aspect of the way the brain enables us to act on the sensory world is its flexibility. We can make a general inference about many sensory features (rating the ripeness of mangoes or avocados) and map a single stimulus onto many choices (slicing or blending mangoes). These can be thought of as flexibly mapping many (features) to one (inference) and one (feature) to many (choices) sensory inputs to actions. Both theoretical and experimental investigations of this sort of flexible sensorimotor mapping tend to treat sensory areas as relatively static. Models typically instantiate flexibility through changing interactions (or weights) between units that encode sensory features and those that plan actions. Experimental investigations often focus on association areas involved in decision-making that show pronounced modulations by cognitive processes. I will present evidence that the flexible formatting of visual information in visual cortex can support both generalized inference and choice mapping. Our results suggest that visual cortex mediates many forms of cognitive flexibility that have traditionally been ascribed to other areas or mechanisms. Further, we find that a primary difference between visual and putative decision areas is not what information they encode, but how that information is formatted in the responses of neural populations, which is related to difference in the impact of causally manipulating different areas on behavior. This scenario allows for flexibility in the mapping between stimuli and behavior while maintaining stability in the information encoded in each area and in the mappings between groups of neurons.

SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Reese Kneeland
Jan 5, 2024

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: Brain-optimized inference improves reconstructions of fMRI brain activity Abstract: The release of large datasets and developments in AI have led to dramatic improvements in decoding methods that reconstruct seen images from human brain activity. We evaluate the prospect of further improving recent decoding methods by optimizing for consistency between reconstructions and brain activity during inference. We sample seed reconstructions from a base decoding method, then iteratively refine these reconstructions using a brain-optimized encoding model that maps images to brain activity. At each iteration, we sample a small library of images from an image distribution (a diffusion model) conditioned on a seed reconstruction from the previous iteration. We select those that best approximate the measured brain activity when passed through our encoding model, and use these images for structural guidance during the generation of the small library in the next iteration. We reduce the stochasticity of the image distribution at each iteration, and stop when a criterion on the "width" of the image distribution is met. We show that when this process is applied to recent decoding methods, it outperforms the base decoding method as measured by human raters, a variety of image feature metrics, and alignment to brain activity. These results demonstrate that reconstruction quality can be significantly improved by explicitly aligning decoding distributions to brain activity distributions, even when the seed reconstruction is output from a state-of-the-art decoding algorithm. Interestingly, the rate of refinement varies systematically across visual cortex, with earlier visual areas generally converging more slowly and preferring narrower image distributions, relative to higher-level brain areas. Brain-optimized inference thus offers a succinct and novel method for improving reconstructions and exploring the diversity of representations across visual brain areas. Speaker: Reese Kneeland is a Ph.D. student at the University of Minnesota working in the Naselaris lab. Paper link: https://arxiv.org/abs/2312.07705

SeminarNeuroscience

Neuronal population interactions between brain areas

Byron Yu
Carnegie Mellon University
Dec 8, 2023

Most brain functions involve interactions among multiple, distinct areas or nuclei. Yet our understanding of how populations of neurons in interconnected brain areas communicate is in its infancy. Using a population approach, we found that interactions between early visual cortical areas (V1 and V2) occur through a low-dimensional bottleneck, termed a communication subspace. In this talk, I will focus on the statistical methods we have developed for studying interactions between brain areas. First, I will describe Delayed Latents Across Groups (DLAG), designed to disentangle concurrent, bi-directional (i.e., feedforward and feedback) interactions between areas. Second, I will describe an extension of DLAG applicable to three or more areas, and demonstrate its utility for studying simultaneous Neuropixels recordings in areas V1, V2, and V3. Our results provide a framework for understanding how neuronal population activity is gated and selectively routed across brain areas.

SeminarNeuroscienceRecording

Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex

Samuel Post
University of California, Riverside
Nov 29, 2023

Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.

SeminarNeuroscienceRecording

The strongly recurrent regime of cortical networks

David Dahmen
Jülich Research Centre, Germany
Mar 29, 2023

Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons. These neurons exhibit highly complex coordination patterns. Where does this complexity stem from? One candidate is the ubiquitous heterogeneity in connectivity of local neural circuits. Studying neural network dynamics in the linearized regime and using tools from statistical field theory of disordered systems, we derive relations between structure and dynamics that are readily applicable to subsampled recordings of neural circuits: Measuring the statistics of pairwise covariances allows us to infer statistical properties of the underlying connectivity. Applying our results to spontaneous activity of macaque motor cortex, we find that the underlying network operates in a strongly recurrent regime. In this regime, network connectivity is highly heterogeneous, as quantified by a large radius of bulk connectivity eigenvalues. Being close to the point of linear instability, this dynamical regime predicts a rich correlation structure, a large dynamical repertoire, long-range interaction patterns, relatively low dimensionality and a sensitive control of neuronal coordination. These predictions are verified in analyses of spontaneous activity of macaque motor cortex and mouse visual cortex. Finally, we show that even microscopic features of connectivity, such as connection motifs, systematically scale up to determine the global organization of activity in neural circuits.

SeminarNeuroscience

A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation

Malcolm Campbell
Harvard
Mar 9, 2023

During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.

SeminarNeuroscienceRecording

Orientation selectivity in rodent V1: theory vs experiments

German Mato
CONICET, Bariloche
Feb 15, 2023

Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.

SeminarNeuroscienceRecording

Minute-scale periodic sequences in medial entorhinal cortex

Soledad Gonzalo Cogno
Norwegian University of Science and Technology, Trondheim
Feb 1, 2023

The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience. While location is known to be encoded by a plethora of spatially tuned cell types in this brain region, little is known about how the activity of entorhinal cells is tied together over time. Among the brain’s most powerful mechanisms for neural coordination are network oscillations, which dynamically synchronize neural activity across circuit elements. In MEC, theta and gamma oscillations provide temporal structure to the neural population activity at subsecond time scales. It remains an open question, however, whether similarly coordination occurs in MEC at behavioural time scales, in the second-to-minute regime. In this talk I will show that MEC activity can be organized into a minute-scale oscillation that entrains nearly the entire cell population, with periods ranging from 10 to 100 seconds. Throughout this ultraslow oscillation, neural activity progresses in periodic and stereotyped sequences. The oscillation sometimes advances uninterruptedly for tens of minutes, transcending epochs of locomotion and immobility. Similar oscillatory sequences were not observed in neighboring parasubiculum or in visual cortex. The ultraslow periodic sequences in MEC may have the potential to couple its neurons and circuits across extended time scales and to serve as a scaffold for processes that unfold at behavioural time scales.

SeminarNeuroscienceRecording

Human see, human do? Tool use representations during picture viewing, pantomiming and real grasping

Stephanie Rossit
University of East Anglia
Jan 24, 2023
SeminarNeuroscienceRecording

Shaping activity in visual cortex through voluntary actions

Roy Mukamel
Tel Aviv University
Jan 17, 2023
SeminarNeuroscienceRecording

Representations of people in the brain

Lucia Garrido
City, University of London
Nov 22, 2022

Faces and voices convey much of the non-verbal information that we use when communicating with other people. We look at faces and listen to voices to recognize others, understand how they are feeling, and decide how to act. Recent research in my lab aims to investigate whether there are similar coding mechanisms to represent faces and voices, and whether there are brain regions that integrate information across the visual and auditory modalities. In the first part of my talk, I will focus on an fMRI study in which we found that a region of the posterior STS exhibits modality-general representations of familiar people that can be similarly driven by someone’s face and their voice (Tsantani et al. 2019). In the second part of the talk, I will describe our recent attempts to shed light on the type of information that is represented in different face-responsive brain regions (Tsantani et al., 2021).

SeminarNeuroscience

Driving human visual cortex, visually and electrically

Dora Hermes Miller
Mayo Clinic, USA
Nov 16, 2022

The development of circuit-based therapeutics to treat neurological and neuropsychiatric diseases require detailed localization and understanding of electrophysiological signals in the human brain. Electrodes can record and stimulate circuits in many ways, and we often rely on non-invasive imaging methods to predict the location to implant electrodes. However, electrophysiological and imaging signals measure the underlying tissue in a fundamentally different manner. To integrate multimodal data and benefit from these complementary measurements, I will describe an approach that considers how different measurements integrate signals across the underlying tissue. I will show how this approach helps relate fMRI and intracranial EEG measurements and provides new insights into how electrical stimulation influences human brain networks.

SeminarNeuroscience

The transformation from seeing to remembering images

Nicole Rust
University of Pennsylvania
Nov 8, 2022
SeminarNeuroscience

Signal in the Noise: models of inter-trial and inter-subject neural variability

Alex Williams
NYU/Flatiron
Nov 4, 2022

The ability to record large neural populations—hundreds to thousands of cells simultaneously—is a defining feature of modern systems neuroscience. Aside from improved experimental efficiency, what do these technologies fundamentally buy us? I'll argue that they provide an exciting opportunity to move beyond studying the "average" neural response. That is, by providing dense neural circuit measurements in individual subjects and moments in time, these recordings enable us to track changes across repeated behavioral trials and across experimental subjects. These two forms of variability are still poorly understood, despite their obvious importance to understanding the fidelity and flexibility of neural computations. Scientific progress on these points has been impeded by the fact that individual neurons are very noisy and unreliable. My group is investigating a number of customized statistical models to overcome this challenge. I will mention several of these models but focus particularly on a new framework for quantifying across-subject similarity in stochastic trial-by-trial neural responses. By applying this method to noisy representations in deep artificial networks and in mouse visual cortex, we reveal that the geometry of neural noise correlations is a meaningful feature of variation, which is neglected by current methods (e.g. representational similarity analysis).

SeminarNeuroscience

Restructuring cortical feedback circuits

Andreas Keller
Institute of Molecular and Clinical Ophthalmology, Basel
Nov 3, 2022

We hardly notice when there is a speck on our glasses, the obstructed visual information seems to be magically filled in. The mechanistic basis for this fundamental perceptual phenomenon has, however, remained obscure. What enables neurons in the visual system to respond to context when the stimulus is not available? While feedforward information drives the activity in cortex, feedback information is thought to provide contextual signals that are merely modulatory. We have made the discovery that mouse primary visual cortical neurons are strongly driven by feedback projections from higher visual areas when their feedforward sensory input from the retina is missing. This drive is so strong that it makes visual cortical neurons fire as much as if they were receiving a direct sensory input. These signals are likely used to predict input from the feedforward pathway. Preliminary results show that these feedback projections are strongly influenced by experience and learning.

SeminarNeuroscienceRecording

Mouse visual cortex as a limited resource system that self-learns an ecologically-general representation

Aran Nayebi
MIT
Nov 2, 2022

Studies of the mouse visual system have revealed a variety of visual brain areas in a roughly hierarchical arrangement, together with a multitude of behavioral capacities, ranging from stimulus-reward associations, to goal-directed navigation, and object-centric discriminations. However, an overall understanding of the mouse’s visual cortex organization, and how this organization supports visual behaviors, remains unknown. Here, we take a computational approach to help address these questions, providing a high-fidelity quantitative model of mouse visual cortex. By analyzing factors contributing to model fidelity, we identified key principles underlying the organization of mouse visual cortex. Structurally, we find that comparatively low-resolution and shallow structure were both important for model correctness. Functionally, we find that models trained with task-agnostic, unsupervised objective functions, based on the concept of contrastive embeddings were substantially better than models trained with supervised objectives. Finally, the unsupervised objective builds a general-purpose visual representation that enables the system to achieve better transfer on out-of-distribution visual, scene understanding and reward-based navigation tasks. Our results suggest that mouse visual cortex is a low-resolution, shallow network that makes best use of the mouse’s limited resources to create a light-weight, general-purpose visual system – in contrast to the deep, high-resolution, and more task-specific visual system of primates.

SeminarNeuroscienceRecording

Hierarchical transformation of visual event timing representations in the human brain: response dynamics in early visual cortex and timing-tuned responses in association cortices

Evi Hendrikx
Utrecht University
Sep 28, 2022

Quantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. For example, this allows us to follow and interact with the precise timing of speech and sports. Here we investigate how visual event timing is represented and transformed across the brain’s hierarchy: from sensory processing areas, through multisensory integration areas, to frontal action planning areas. We hypothesized that the dynamics of neural responses to sensory events in sensory processing areas allows derivation of event timing representations. This would allow higher-level processes such as multisensory integration and action planning to use sensory timing information, without the need for specialized central pacemakers or processes. Using 7T fMRI and neural model-based analyses, we found responses that monotonically increase in amplitude with visual event duration and frequency, becoming increasingly clear from primary visual cortex to lateral occipital visual field maps. Beginning in area MT/V5, we found a gradual transition from monotonic to tuned responses, with response amplitudes peaking at different event timings in different recording sites. While monotonic response components were limited to the retinotopic location of the visual stimulus, timing-tuned response components were independent of the recording sites' preferred visual field positions. These tuned responses formed a network of topographically organized timing maps in superior parietal, postcentral and frontal areas. From anterior to posterior timing maps, multiple events were increasingly integrated, response selectivity narrowed, and responses focused increasingly on the middle of the presented timing range. These results suggest that responses to event timing are transformed from the human brain’s sensory areas to the association cortices, with the event’s temporal properties being increasingly abstracted from the response dynamics and locations of early sensory processing. The resulting abstracted representation of event timing is then propagated through areas implicated in multisensory integration and action planning.

SeminarNeuroscience

Multi-level theory of neural representations in the era of large-scale neural recordings: Task-efficiency, representation geometry, and single neuron properties

SueYeon Chung
NYU/Flatiron
Sep 16, 2022

A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of representations in neural circuits. In this talk, we will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from the structure in neural populations and from biologically plausible neural networks. First, we will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes a perceptron’s capacity for linearly classifying object categories based on the underlying neural manifolds’ structural properties. Next, we will describe how such methods can, in fact, open the ‘black box’ of distributed neuronal circuits in a range of experimental neural datasets. In particular, our method overcomes the limitations of traditional dimensionality reduction techniques, as it operates directly on the high-dimensional representations, rather than relying on low-dimensionality assumptions for visualization. Furthermore, this method allows for simultaneous multi-level analysis, by measuring geometric properties in neural population data, and estimating the amount of task information embedded in the same population. These geometric frameworks are general and can be used across different brain areas and task modalities, as demonstrated in the work of ours and others, ranging from the visual cortex to parietal cortex to hippocampus, and from calcium imaging to electrophysiology to fMRI datasets. Finally, we will discuss our recent efforts to fully extend this multi-level description of neural populations, by (1) investigating how single neuron properties shape the representation geometry in early sensory areas, and by (2) understanding how task-efficient neural manifolds emerge in biologically-constrained neural networks. By extending our mathematical toolkit for analyzing representations underlying complex neuronal networks, we hope to contribute to the long-term challenge of understanding the neuronal basis of tasks and behaviors.

SeminarNeuroscience

From Computation to Large-scale Neural Circuitry in Human Belief Updating

Tobias Donner
University Medical Center Hamburg-Eppendorf
Jun 29, 2022

Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.

SeminarNeuroscience

Feedforward and feedback processes in visual recognition

Thomas Serre
Brown University
Jun 22, 2022

Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching – and sometimes even surpassing – human accuracy on a variety of visual recognition tasks. In this talk, however, I will show that these neural networks and their recent extensions exhibit a limited ability to solve seemingly simple visual reasoning problems involving incremental grouping, similarity, and spatial relation judgments. Our group has developed a recurrent network model of classical and extra-classical receptive field circuits that is constrained by the anatomy and physiology of the visual cortex. The model was shown to account for diverse visual illusions providing computational evidence for a novel canonical circuit that is shared across visual modalities. I will show that this computational neuroscience model can be turned into a modern end-to-end trainable deep recurrent network architecture that addresses some of the shortcomings exhibited by state-of-the-art feedforward networks for solving complex visual reasoning tasks. This suggests that neuroscience may contribute powerful new ideas and approaches to computer science and artificial intelligence.

SeminarNeuroscience

On the contributions of retinal direction selectivity to cortical motion processing in mice

Rune Nguyen Rasmussen
University of Copenhagen
Jun 10, 2022

Cells preferentially responding to visual motion in a particular direction are said to be direction-selective, and these were first identified in the primary visual cortex. Since then, direction-selective responses have been observed in the retina of several species, including mice, indicating motion analysis begins at the earliest stage of the visual hierarchy. Yet little is known about how retinal direction selectivity contributes to motion processing in the visual cortex. In this talk, I will present our experimental efforts to narrow this gap in our knowledge. To this end, we used genetic approaches to disrupt direction selectivity in the retina and mapped neuronal responses to visual motion in the visual cortex of mice using intrinsic signal optical imaging and two-photon calcium imaging. In essence, our work demonstrates that direction selectivity computed at the level of the retina causally serves to establish specialized motion responses in distinct areas of the mouse visual cortex. This finding thus compels us to revisit our notions of how the brain builds complex visual representations and underscores the importance of the processing performed in the periphery of sensory systems.

SeminarNeuroscience

Re-vision: inspirations from the early attentional selection by the primary visual cortex

Zhaoping Li
Max Planck Institute for Biological Cybernetics, Tübingen
Jun 2, 2022
SeminarNeuroscience

Feedback controls what we see

Andreas Keller
Institute of Molecular and Clinical Ophthalmology Basel
May 30, 2022

We hardly notice when there is a speck on our glasses, the obstructed visual information seems to be magically filled in. The visual system uses visual context to predict the content of the stimulus. What enables neurons in the visual system to respond to context when the stimulus is not available? In cortex, sensory processing is based on a combination of feedforward information arriving from sensory organs, and feedback information that originates in higher-order areas. Whereas feedforward information drives the activity in cortex, feedback information is thought to provide contextual signals that are merely modulatory. We have made the exciting discovery that mouse primary visual cortical neurons are strongly driven by feedback projections from higher visual areas, in particular when their feedforward sensory input from the retina is missing. This drive is so strong that it makes visual cortical neurons fire as much as if they were receiving a direct sensory input.

SeminarNeuroscience

Synthetic and natural images unlock the power of recurrency in primary visual cortex

Andreea Lazar
Ernst Strüngmann Institute (ESI) for Neuroscience
May 20, 2022

During perception the visual system integrates current sensory evidence with previously acquired knowledge of the visual world. Presumably this computation relies on internal recurrent interactions. We record populations of neurons from the primary visual cortex of cats and macaque monkeys and find evidence for adaptive internal responses to structured stimulation that change on both slow and fast timescales. In the first experiment, we present abstract images, only briefly, a protocol known to produce strong and persistent recurrent responses in the primary visual cortex. We show that repetitive presentations of a large randomized set of images leads to enhanced stimulus encoding on a timescale of minutes to hours. The enhanced encoding preserves the representational details required for image reconstruction and can be detected in post-exposure spontaneous activity. In a second experiment, we show that the encoding of natural scenes across populations of V1 neurons is improved, over a timescale of hundreds of milliseconds, with the allocation of spatial attention. Given the hierarchical organization of the visual cortex, contextual information from the higher levels of the processing hierarchy, reflecting high-level image regularities, can inform the activity in V1 through feedback. We hypothesize that these fast attentional boosts in stimulus encoding rely on recurrent computations that capitalize on the presence of high-level visual features in natural scenes. We design control images dominated by low-level features and show that, in agreement with our hypothesis, the attentional benefits in stimulus encoding vanish. We conclude that, in the visual system, powerful recurrent processes optimize neuronal responses, already at the earliest stages of cortical processing.

SeminarNeuroscienceRecording

A transcriptomic axis predicts state modulation of cortical interneurons

Stephane Bugeon
Harris & Carandini's lab, UCL
Apr 27, 2022

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.

SeminarNeuroscienceRecording

Taking a closer look at the contribution of the dorsal pathway to perception

Erez Freud
York
Apr 5, 2022
SeminarNeuroscienceRecording

Human visual cortex as a window into the developing brain

Kalanit Grill-Spector
Stanford
Mar 31, 2022
SeminarNeuroscienceRecording

Probabilistic computation in natural vision

Ruben Coen-Cagli
Albert Einstein College of Medicine
Mar 30, 2022

A central goal of vision science is to understand the principles underlying the perception and neural coding of the complex visual environment of our everyday experience. In the visual cortex, foundational work with artificial stimuli, and more recent work combining natural images and deep convolutional neural networks, have revealed much about the tuning of cortical neurons to specific image features. However, a major limitation of this existing work is its focus on single-neuron response strength to isolated images. First, during natural vision, the inputs to cortical neurons are not isolated but rather embedded in a rich spatial and temporal context. Second, the full structure of population activity—including the substantial trial-to-trial variability that is shared among neurons—determines encoded information and, ultimately, perception. In the first part of this talk, I will argue for a normative approach to study encoding of natural images in primary visual cortex (V1), which combines a detailed understanding of the sensory inputs with a theory of how those inputs should be represented. Specifically, we hypothesize that V1 response structure serves to approximate a probabilistic representation optimized to the statistics of natural visual inputs, and that contextual modulation is an integral aspect of achieving this goal. I will present a concrete computational framework that instantiates this hypothesis, and data recorded using multielectrode arrays in macaque V1 to test its predictions. In the second part, I will discuss how we are leveraging this framework to develop deep probabilistic algorithms for natural image and video segmentation.

SeminarNeuroscience

Dissecting the neural processes supporting perceptual learning

Wu Li
Beijing Normal University, Beijing, China
Mar 28, 2022

The brain and its inherent functions can be modified by various forms of learning. Learning-induced changes are seen even in basic perceptual functions. In particular, repeated training in a perceptual task can lead to a significant improvement in the trained task—a phenomenon known as perceptual learning. There has been a long-standing debate about the mechanisms of perceptual learning. In this talk, I will present results from our series of electrophysiological studies. These studies have consistently shown that perceptual learning is mediated by concerted changes in both perceptual and cognitive processes, resulting in improved sensory representation, enhanced top-down influences, and refined readout process.

SeminarNeuroscienceRecording

Reorganisation of the human visual system in the absence of light input

Holly Bridge
University of Oxford, UK
Mar 24, 2022
SeminarNeuroscienceRecording

How does the metabolically-expensive mammalian brain adapt to food scarcity?

Zahid Padamsey
Rochefort lab, University of Edinburgh
Feb 23, 2022

Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. I addressed this in the visual cortex of awake mice using whole-cell recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. I found that food restriction reduced synaptic ATP usage by 29% through a decrease in AMPA receptor conductance. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.

SeminarNeuroscienceRecording

Keeping visual cortex in the back of your mind: From visual inputs to behavior and memory

Sharon Gilaie-Dotan
Bar Ilan University
Feb 22, 2022
SeminarNeuroscience

Attention to visual motion: shaping sensation into perception

Stefan Treue
German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
Feb 21, 2022

Evolution has endowed primates, including humans, with a powerful visual system, seemingly providing us with a detailed perception of our surroundings. But in reality the underlying process is one of active filtering, enhancement and reshaping. For visual motion perception, the dorsal pathway in primate visual cortex and in particular area MT/V5 is considered to be of critical importance. Combining physiological and psychophysical approaches we have used the processing and perception of visual motion and area MT/V5 as a model for the interaction of sensory (bottom-up) signals with cognitive (top-down) modulatory influences that characterizes visual perception. Our findings document how this interaction enables visual cortex to actively generate a neural representation of the environment that combines the high-performance sensory periphery with selective modulatory influences for producing an “integrated saliency map’ of the environment.

SeminarNeuroscience

Visual and cross-modal plasticity in adult humans

Claudia Lunghi
Laboratoire des Systèmes Perceptifs, Ecole Normale Supérieure & CNRS, Paris, France
Feb 3, 2022

Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within a specific temporal window called critical period. However, it is still unclear to which extent the plastic potential of the visual cortex is retained in adulthood. We have surprisingly revealed residual ocular dominance plasticity in adult humans by showing that short-term monocular deprivation unexpectedly boosts the deprived eye (both at the perceptual and at the neural level), reflecting homeostatic plasticity. This effect is accompanied by a decrease of GABAergic inhibition in the primary visual cortex and can be modulated by non-visual factors (motor activity and motor plasticity). Finally, we have found that cross-modal plasticity is preserved in adult normal-sighted humans, as short-term monocular deprivation can alter early visuo-tactile interactions. Taken together, these results challenge the classical view of a hard-wired adult visual cortex, indicating that homeostatic plasticity can be reactivated in adult humans.

SeminarNeuroscience

The pervasive role of visuospatial coding

Edward Silson
School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
Feb 1, 2022

Historically, retinotopic organisation (the spatial mapping of the retina across the cortical surface) was considered the purview of early regions of visual cortex (V1-V4) only and that anterior, more cognitively involved regions abstracted this information away. The contemporary view is quite different. Here, with Advancing technologies and analysis methods, we see that retinotopic information is not simply thrown away by these regions but rather is maintained to the potential benefit of our broader cognition. This maintenance of visuospatial coding extends not only through visual cortex, but is present in parietal, frontal, medial and subcortical structures involved with coordinating-movements, mind-wandering and even memory. In this talk, I will outline some of the key empirical findings from my own work and the work of others that shaped this contemporary perspective.

SeminarNeuroscienceRecording

Norepinephrine links astrocytic activity to regulation of cortical state

Michael Reitman
Poskanzer Lab, UCSF
Jan 26, 2022

Cortical state, defined by the synchrony of population-level neuronal activity, is a key determinant of sensory perception. While many arousal-associated neuromodulators—including norepinephrine (NE)—reduce cortical synchrony, how the cortex resynchronizes following NE signaling remains unknown. Using in vivo two-photon imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes’ sensitive calcium responses to changes in behavioral arousal and NE, identify that astrocyte signaling precedes increases in cortical synchrony, and demonstrate that astrocyte-specific deletion of Adra1A alters arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.

SeminarNeuroscience

What does the primary visual cortex tell us about object recognition?

Tiago Marques
MIT
Jan 24, 2022

Object recognition relies on the complex visual representations in cortical areas at the top of the ventral stream hierarchy. While these are thought to be derived from low-level stages of visual processing, this has not been shown, yet. Here, I describe the results of two projects exploring the contributions of primary visual cortex (V1) processing to object recognition using artificial neural networks (ANNs). First, we developed hundreds of ANN-based V1 models and evaluated how their single neurons approximate those in the macaque V1. We found that, for some models, single neurons in intermediate layers are similar to their biological counterparts, and that the distributions of their response properties approximately match those in V1. Furthermore, we observed that models that better matched macaque V1 were also more aligned with human behavior, suggesting that object recognition is derived from low-level. Motivated by these results, we then studied how an ANN’s robustness to image perturbations relates to its ability to predict V1 responses. Despite their high performance in object recognition tasks, ANNs can be fooled by imperceptibly small, explicitly crafted perturbations. We observed that ANNs that better predicted V1 neuronal activity were also more robust to adversarial attacks. Inspired by this, we developed VOneNets, a new class of hybrid ANN vision models. Each VOneNet contains a fixed neural network front-end that simulates primate V1 followed by a neural network back-end adapted from current computer vision models. After training, VOneNets were substantially more robust, outperforming state-of-the-art methods on a set of perturbations. While current neural network architectures are arguably brain-inspired, these results demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in computer vision applications and results in better models of the primate ventral stream and object recognition behavior.

SeminarNeuroscienceRecording

Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex

Alexander Attinger
Giocomo lab, Stanford University
Jan 12, 2022

During navigation, animals estimate their position using path integration and landmarks, engaging many brain areas. Whether these areas follow specialized or universal cue integration principles remains incompletely understood. We combine electrophysiology with virtual reality to quantify cue integration across thousands of neurons in three navigation-relevant areas: primary visual cortex (V1), retrosplenial cortex (RSC), and medial entorhinal cortex (MEC). Compared with V1 and RSC, path integration influences position estimates more in MEC, and conflicts between path integration and landmarks trigger remapping more readily. Whereas MEC codes position prospectively, V1 codes position retrospectively, and RSC is intermediate between the two. Lowered visual contrast increases the influence of path integration on position estimates only in MEC. These properties are most pronounced in a population of MEC neurons, overlapping with grid cells, tuned to distance run in darkness. These results demonstrate the specialized role that path integration plays in MEC compared with other navigation-relevant cortical areas.

visual cortex coverage

50 items

Seminar50
Domain spotlight

Explore how visual cortex research is advancing inside Neuro.

Visit domain