TopicNeuroscience
Content Overview
5Total items
5Seminars

Latest

SeminarNeuroscienceRecording

Perceptual illusions we understand well, and illusions which aren’t really illusions

Michael Bach
University of Freiburg
Nov 12, 2024
SeminarNeuroscience

Central-peripheral dichotomy in vision: its motivation and predictions (such as in visual illusions)

Zhaoping Li
Mar 11, 2023
SeminarNeuroscienceRecording

A model of colour appearance based on efficient coding of natural images

Jolyon Troscianko
University of Exeter
Jul 18, 2022

An object’s colour, brightness and pattern are all influenced by its surroundings, and a number of visual phenomena and “illusions” have been discovered that highlight these often dramatic effects. Explanations for these phenomena range from low-level neural mechanisms to high-level processes that incorporate contextual information or prior knowledge. Importantly, few of these phenomena can currently be accounted for when measuring an object’s perceived colour. Here we ask to what extent colour appearance is predicted by a model based on the principle of coding efficiency. The model assumes that the image is encoded by noisy spatio-chromatic filters at one octave separations, which are either circularly symmetrical or oriented. Each spatial band’s lower threshold is set by the contrast sensitivity function, and the dynamic range of the band is a fixed multiple of this threshold, above which the response saturates. Filter outputs are then reweighted to give equal power in each channel for natural images. We demonstrate that the model fits human behavioural performance in psychophysics experiments, and also primate retinal ganglion responses. Next we systematically test the model’s ability to qualitatively predict over 35 brightness and colour phenomena, with almost complete success. This implies that contrary to high-level processing explanations, much of colour appearance is potentially attributable to simple mechanisms evolved for efficient coding of natural images, and is a basis for modelling the vision of humans and other animals.

SeminarNeuroscience

Feedforward and feedback processes in visual recognition

Thomas Serre
Brown University
Jun 22, 2022

Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching – and sometimes even surpassing – human accuracy on a variety of visual recognition tasks. In this talk, however, I will show that these neural networks and their recent extensions exhibit a limited ability to solve seemingly simple visual reasoning problems involving incremental grouping, similarity, and spatial relation judgments. Our group has developed a recurrent network model of classical and extra-classical receptive field circuits that is constrained by the anatomy and physiology of the visual cortex. The model was shown to account for diverse visual illusions providing computational evidence for a novel canonical circuit that is shared across visual modalities. I will show that this computational neuroscience model can be turned into a modern end-to-end trainable deep recurrent network architecture that addresses some of the shortcomings exhibited by state-of-the-art feedforward networks for solving complex visual reasoning tasks. This suggests that neuroscience may contribute powerful new ideas and approaches to computer science and artificial intelligence.

SeminarNeuroscience

Individual differences in visual (mis)perception: a multivariate statistical approach

Aline Cretenoud
Laboratory of Psychophysics, BMI, SV, EPFL
Dec 8, 2021

Common factors are omnipresent in everyday life, e.g., it is widely held that there is a common factor g for intelligence. In vision, however, there seems to be a multitude of specific factors rather than a strong and unique common factor. In my thesis, I first examined the multidimensionality of the structure underlying visual illusions. To this aim, the susceptibility to various visual illusions was measured. In addition, subjects were tested with variants of the same illusion, which differed in spatial features, luminance, orientation, or contextual conditions. Only weak correlations were observed between the susceptibility to different visual illusions. An individual showing a strong susceptibility to one visual illusion does not necessarily show a strong susceptibility to other visual illusions, suggesting that the structure underlying visual illusions is multifactorial. In contrast, there were strong correlations between the susceptibility to variants of the same illusion. Hence, factors seem to be illusion-specific but not feature-specific. Second, I investigated whether a strong visual factor emerges in healthy elderly and patients with schizophrenia, which may be expected from the general decline in perceptual abilities usually reported in these two populations compared to healthy young adults. Similarly, a strong visual factor may emerge in action video gamers, who often show enhanced perceptual performance compared to non-video gamers. Hence, healthy elderly, patients with schizophrenia, and action video gamers were tested with a battery of visual tasks, such as a contrast detection and orientation discrimination task. As in control groups, between-task correlations were weak in general, which argues against the emergence of a strong common factor for vision in these populations. While similar tasks are usually assumed to rely on similar neural mechanisms, the performances in different visual tasks were only weakly related to each other, i.e., performance does not generalize across visual tasks. These results highlight the relevance of an individual differences approach to unravel the multidimensionality of the visual structure.

visual illusions coverage

5 items

Seminar5

Share your knowledge

Know something about visual illusions? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how visual illusions research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.