Visual Working Memory
visual working memory
Latest
Anticipating behaviour through working memory (BACN Early Career Prize Lecture 2023)
Working memory is about the past but for the future. Adopting such a future-focused perspective shifts the narrative of working memory as a limited-capacity storage system to working memory as an anticipatory buffer that helps us prepare for potential and sequential upcoming behaviour. In my talk, I will present a series of our recent studies that have started to reveal emerging principles of a working memory that looks forward – highlighting, amongst others, how selective attention plays a vital role in prioritising internal contents for behaviour, and the bi-directional links between visual working memory and action. These studies show how studying the dynamics of working memory, selective attention, and action together paves way for an integrated understanding of how mind serves behaviour.
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
The consequences and constraints of functional organization on behavior
In many ways, cognitive neuroscience is the attempt to use physiological observation to clarify the mechanisms that shape behavior. Over the past 25 years, fMRI has provided a system-wide and yet somewhat spatially precise view of the response in human cortex evoked by a wide variety of stimuli and task contexts. The current talk focuses on the other direction of inference; the implications of this observed functional organization for behavior. To begin, we must interrogate the methodological and empirical frameworks underlying our derivation of this organization, partially by exploring its relationship to and predictability from gross neuroanatomy. Next, across a series of studies, the implications of two properties of functional organization for behavior will be explored: 1) the co-localization of visual working memory and perceptual processing and 2) implicit learning in the context of distributed responses. In sum, these results highlight the limitations of our current approach and hint at a new general mechanism for explaining observed behavior in context with the neural substrate.
visual working memory coverage
3 items