TopicNeuroscience

voltage imaging

Content Overview
2Total items
1Seminar
1ePoster

Latest

SeminarNeuroscienceRecording

Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples

Javad Karimi Abadchi
Mohajerani & McNaughton lab, Uni of Lethbridge Canada
Apr 21, 2021

Neocortical-hippocampal interactions during off-line periods such as slow-wave sleep are implicated in memory processing. In particular, recent memory traces are replayed in hippocampus during some sharp-wave ripple (SWR) events, and these replay events are positively correlated with neocortical memory trace reactivation. A prevalent model is that SWR arise ‘spontaneously’ in CA3 and propagate recent memory ‘indices’ outward to the neocortex to enable memory consolidation there; however, the spatiotemporal distribution of neocortical activation relative to SWR is incompletely understood. We used wide-field optical imaging to study voltage and glutamate release transients in dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR of sleeping and urethane anesthetized mice. Modulation of voltage and glutamate release signals in relation to SWRs varied across superficial neocortical regions, and it was largest in posteromedial regions surrounding retrosplenial cortex (RSC), which receives strong hippocampal output connections. Activity tended to spread sequentially from more medial towards more lateral regions. Contrary to the unidirectional hypothesis, activation exhibited a continuum of timing relative to SWRs, varying from neocortex leading to neocortex lagging the SWRs (± ~250 msec). The timing continuum was correlated with the skewness of peri-SWR hippocampal MUA and with a tendency for some SWR to occur in clusters. Thus, contrary to the model in which SWRs arise spontaneously in hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’.

ePosterNeuroscience

The potential of voltage imaging for accurate inference of neuron connections in vivo

Tomas Fiers, Matias Ison, Mark Humphries

voltage imaging coverage

2 items

Seminar1
ePoster1

Share your knowledge

Know something about voltage imaging? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how voltage imaging research is advancing inside Neuroscience.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.