walking trajectories
Latest
Reward foraging task, and model-based analysis reveal how fruit flies learn the value of available options
Understanding what drives foraging decisions in animals requires careful manipulation of the value of available options while monitoring animal choices. Value-based decision-making tasks, in combination with formal learning models, have provided both an experimental and theoretical framework to study foraging decisions in lab settings. While these approaches were successfully used in the past to understand what drives choices in mammals, very little work has been done on fruit flies. This is even though fruit flies have served as a model organism for many complex behavioural paradigms. To fill this gap we developed a single-animal, trial-based decision-making task, where freely walking flies experienced optogenetic sugar-receptor neuron stimulation. We controlled the value of available options by manipulating the probabilities of optogenetic stimulation. We show that flies integrate a reward history of chosen options and forget value of unchosen options. We further discover that flies assign higher values to rewards experienced early in the behavioural session, consistent with formal reinforcement learning models. Finally, we show that the probabilistic rewards affect walking trajectories of flies, suggesting that accumulated value is controlling the navigation vector of flies in a graded fashion. These findings establish the fruit fly as a model organism to explore the genetic and circuit basis of value-based decisions.
walking trajectories coverage
1 items