TopicPhysics of Life
Content Overview
5Total items
5Seminars

Latest

SeminarPhysics of LifeRecording

3D Printing Cellular Communities: Mammalian Cells, Bacteria, And Beyond

Tapomoy Bhattacharjee
Princeton University
Jun 21, 2021

While the motion and collective behavior of cells are well-studied on flat surfaces or in unconfined liquid media, in most natural settings, cells thrive in complex 3D environments. Bioprinting processes are capable of structuring cells in 3D and conventional bioprinting approaches address this challenge by embedding cells in bio-degradable polymer networks. However, heterogeneity in network structure and biodegradation often preclude quantitative studies of cell behavior in specified 3D architectures. Here, I will present a new approach to 3D bioprinting of cellular communities that utilizes jammed, granular polyelectrolyte microgels as a support medium. The self-healing nature of this medium allows the creation of highly precise cellular communities and tissue-like structures by direct injection of cells inside the 3D medium. Further, the transparent nature of this medium enables precise characterization of cellular behavior. I will describe two examples of my work using this platform to study the behavior of two different classes of cells in 3D. First, I will describe how we interrogate the growth, viability, and migration of mammalian cells—ranging from epithelial cells, cancer cells, and T cells—in the 3D pore space. Second, I will describe how we interrogate the migration of E. coli bacteria through the 3D pore space. Direct visualization enables us to reveal a new mode of motility exhibited by individual cells, in stark contrast to the paradigm of run-and-tumble motility, in which cells are intermittently and transiently trapped as they navigate the pore space; further, analysis of these dynamics enables prediction of single-cell transport over large length and time scales. Moreover, we show that concentrated populations of E. coli can collectively migrate through a porous medium—despite being strongly confined—by chemotactically “surfing” a self-generated nutrient gradient. Together, these studies highlight how the jammed microgel medium provides a powerful platform to design and interrogate complex cellular communities in 3D—with implications for tissue engineering, microtissue mechanics, studies of cellular interactions, and biophysical studies of active matter.

SeminarPhysics of Life

Tutorial talk: Bacterial Chemotaxis

Thiery Emonet
Yale
Apr 2, 2021
SeminarPhysics of Life

“Life in a Tight Spot: How Bacteria Move in Heterogeneous Media”

Sujit Datta
Princeton University
Jan 12, 2021

Bacterial motility is central to processes in agriculture, the environment, and medicine. While motility is typically studied in homogeneous environments, many bacterial habitats—e.g., soils, sediments, and biological gels/tissues—are heterogeneous porous media. Here, through studies of E. coli in transparent 3D porous media, we demonstrate that confinement in a heterogeneous medium fundamentally alters motility. In particular, we show how the paradigm of run-and-tumble motility is dramatically altered by pore-scale confinement, both for cells performing undirected motion and those performing chemotaxis, directed motion in response to a chemical stimulus. Our porous media also enable precisely structured multi-cellular communities to be 3D printed. Using this capability, we show how confinement-dependent chemotaxis enables populations to stabilize large-scale perturbations in their overall morphology. Together, our work thus reveals new principles to predict and control the behavior of bacteria, and active matter in general, in heterogeneous environments.

SeminarPhysics of Life

“DNA sensing in Bacillus subtilis”

Christopher V. Rao
University of Illinois at Urbana-Champaign
Oct 13, 2020

Chemotaxis is the process where cells move in response to external chemical gradients. It has mainly been viewed as a foraging and defense mechanism, enabling bacteria to move towards nutrients or away from toxins. We recently found that the Gram-positive bacterium Bacillus subtilis performs chemotaxis towards DNA. While DNA can serve as a nutrient for B. subtilis, our results suggest that the response is not to DNA itself but rather to the information encoded within the DNA. In particular, we found that B. subtilis prefers DNA from more closely related species. These results suggest that B. subtilis seeks out specific DNA sequences that are more abundant in its own and related chromosomes. In this talk, I will discuss the mechanism of DNA sensing and chemotaxis in B. subtilis. I will conclude by discussing the physiological significance of DNA chemotaxis with regards to natural competence and kin identification.

SeminarPhysics of LifeRecording

Swimming in the third domain: archaeal extremophiles

Laurence Wilson
University of York
Aug 19, 2020

Archaea have evolved to survive in some of the most extreme environments on earth. Life in extreme, nutrient-poor conditions gives the opportunity to probe fundamental energy limitations on movement and response to stimuli, two essential markers of living systems. Here we use three-dimensional holographic microscopy and computer simulations to show that halophilic archaea achieve chemotaxis with power requirements one hundred-fold lower than common eubacterial model systems. Their swimming direction is stabilised by their flagella (archaella), enhancing directional persistence in a manner similar to that displayed by eubacteria, albeit with a different motility apparatus. Our experiments and simulations reveal that the cells are capable of slow but deterministic chemotaxis up a chemical gradient, in a biased random walk at the thermodynamic limit.

chemotaxis coverage

5 items

Seminar5

Share your knowledge

Know something about chemotaxis? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how chemotaxis research is advancing inside Physics of Life.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.