Latest

SeminarPhysics of LifeRecording

Metachronal waves in swarms of nematode Turbatrix aceti

Anton Peshkov
University of Rochester
Nov 8, 2021

There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While analytical and numerical models of such systems are now abundant, no real-life examples have been shown to date. I will present an experimental investigation of the collective motion of the nematode Turbatrix aceti, which self-propel by body undulation. I will show that under favorable conditions these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves which, similar to the case of beating cilia, produce strong fluid flows. I will demonstrate that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. I will illustrate this by a practical example: showing that the force generated by the collectively moving nematodes is sufficient to change the mode of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength.

SeminarPhysics of Life

Research talk: Spontaneous ciliary waves

Eva Kanso
University of Southern California
Aug 6, 2021
SeminarPhysics of Life

Tutorial talk: Ciliated tissues from form to function

Eva Kanso
University of Southern California
Aug 6, 2021
SeminarPhysics of Life

Coordinated motion of active filaments on spherical surfaces

Eric Keaveny
Imperial College London
Jul 7, 2021

Filaments (slender, microscopic elastic bodies) are prevalent in biological and industrial settings. In the biological case, the filaments are often active, in that they are driven internally by motor proteins, with the prime examples being cilia and flagella. For cilia in particular, which can appear in dense arrays, their resulting motions are coupled through the surrounding fluid, as well as through surfaces to which they are attached. In this talk, I present numerical simulations exploring the coordinated motion of active filaments and how it depends on the driving force, density of filaments, as well as the attached surface. In particular, we find that when the surface is spherical, its topology introduces local defects in coordinated motion which can then feedback and alter the global state. This is particularly true when the surface is not held fixed and is free to move in the surrounding fluid. These simulations take advantage of a computational framework we developed for fully 3D filament motion that combines unit quaternions, implicit geometric time integration, quasi-Newton methods, and fast, matrix-free methods for hydrodynamic interactions and it will also be presented.

SeminarPhysics of Life

Beating of artificial cilia

Jean-Francios Joanny
Apr 9, 2021

cilia coverage

6 items

Seminar6
Domain spotlight

Explore how cilia research is advancing inside Physics of Life.

Visit domain