Latest

SeminarPhysics of LifeRecording

Exact coherent structures and transition to turbulence in a confined active nematic

Caleb Wagner
University of Nebraska-Lincoln
Feb 27, 2022

Active matter describes a class of systems that are maintained far from equilibrium by driving forces acting on the constituent particles. Here I will focus on confined active nematics, which exhibit especially rich flow behavior, ranging from structured patterns in space and time to disordered turbulent flows. To understand this behavior, I will take a deterministic dynamical systems approach, beginning with the hydrodynamic equations for the active nematic. This approach reveals that the infinite-dimensional phase space of all possible flow configurations is populated by Exact Coherent Structures (ECS), which are exact solutions of the hydrodynamic equations with distinct and regular spatiotemporal structure; examples include unstable equilibria, periodic orbits, and traveling waves. The ECS are connected by dynamical pathways called invariant manifolds. The main hypothesis in this approach is that turbulence corresponds to a trajectory meandering in the phase space, transitioning between ECS by traveling on the invariant manifolds. Similar approaches have been successful in characterizing high Reynolds number turbulence of passive fluids. Here, I will present the first systematic study of active nematic ECS and their invariant manifolds and discuss their role in characterizing the phenomenon of active turbulence.

SeminarPhysics of LifeRecording

Theory, reimagined

Greg Stephens
VU Amsterdam
Dec 11, 2020

Physics offers countless examples for which theoretical predictions are astonishingly powerful. But it’s hard to imagine a similar precision in complex systems where the number and interdependencies between components simply prohibits a first-principles approach, look no further than the challenge of the billions of neurons and trillions of connections within our own brains. In such settings how do we even identify the important theoretical questions? We describe a systems-scale perspective in which we integrate information theory, dynamical systems and statistical physics to extract understanding directly from measurements. We demonstrate our approach with a reconstructed state space of the behavior of the nematode C. elegans, revealing a chaotic attractor with symmetric Lyapunov spectrum and a novel perspective of motor control. We then outline a maximally predictive coarse-graining in which nonlinear dynamics are subsumed into a linear, ensemble evolution to obtain a simple yet accurate model on multiple scales. With this coarse-graining we identify long timescales and collective states in the Langevin dynamics of a double-well potential, the Lorenz system and in worm behavior. We suggest that such an ``inverse’’ approach offers an emergent, quantitative framework in which to seek rather than impose effective organizing principles of complex systems.

SeminarPhysics of LifeRecording

Simons-Emory Workshop on Neural Dynamics: What could neural dynamics have to say about neural computation, and do we know how to listen?

Workshop, Multiple Speakers
Emory University
Dec 4, 2020

Speakers will deliver focused 10-minute talks, with periods reserved for broader discussion on topics at the intersection of neural dynamics and computation. Organizer & Moderator: Chethan Pandarinath - Emory University and Georgia Tech Speakers & Discussants: Adrienne Fairhall - U Washington Mehrdad Jazayeri - MIT John Krakauer - John Hopkins Francesca Mastrogiuseppe - Gatsby / UCL Abigail Person - U Colorado Abigail Russo - Princeton Krishna Shenoy - Stanford Saurabh Vyas - Columbia

SeminarPhysics of Life

Pancreatic α and β cells are globally phase-locked

Chao Tang
Peking University – Beijing China
Jul 29, 2020

The Ca2+ modulated pulsatile secretions of glucagon and insulin by pancreatic α and β cells play a key role in glucose metabolism and homeostasis. However, how different types of cells in the islet couple and coordinate to give rise to various Ca2+ oscillation patterns and how these patterns are being tuned by paracrine regulation are still elusive. Here we developed a microfluidic device to facilitate long-term recording of islet Ca2+ activity at single cell level and found that islets show heterogeneous but intrinsic oscillation patterns. The α and β cells in an islet oscillate in antiphase and are globally phase locked to display a variety of oscillation modes. A mathematical model of islet oscillation maps out the dependence of the oscillation modes on the paracrine interactions between α and β cells. Our study reveals the origin of the islet oscillation patterns and highlights the role of paracrine regulation in tuning them.

dynamical systems coverage

4 items

Seminar4
Domain spotlight

Explore how dynamical systems research is advancing inside Physics of Life.

Visit domain