TopicPhysics of Life

statistical mechanics

Latest

SeminarPhysics of LifeRecording

Mutation induced infection waves in diseases like COVID-19

Fabian Jan Schwarzendahl
Heinrich Heine University, Dusseldorf
Oct 11, 2021

After more than 4 million deaths worldwide, the ongoing vaccination to conquer the COVID-19 disease is now competing with the emergence of increasingly contagious mutations, repeatedly supplanting earlier strains. Following the near-absence of historical examples of the long-time evolution of infectious diseases under similar circumstances, models are crucial to exemplify possible scenarios. Accordingly, in the present work we systematically generalize the popular susceptible-infected-recovered model to account for mutations leading to repeatedly occurring new strains, which we coarse grain based on tools from statistical mechanics to derive a model predicting the most likely outcomes. The model predicts that mutations can induce a super exponential growth of infection numbers at early times, which self-amplify to giant infection waves which are caused by a positive feedback loop between infection numbers and mutations and lead to a simultaneous infection of the majority of the population. At later stages -- if vaccination progresses too slowly -- mutations can interrupt an ongoing decrease of infection numbers and can cause infection revivals which occur as single waves or even as whole wave trains featuring alternative periods of decreasing and increasing infection numbers. Our results might be useful for discussions regarding the importance of a release of vaccine-patents to reduce the risk of mutation-induced infection revivals but also to coordinate the release of measures following a downwards trend of infection numbers.

SeminarPhysics of LifeRecording

Light-bacteria interactions

Roberto Di Leonardo
Sapienza University of Rome
Feb 3, 2021

In 1676, using candle light and a small glass sphere as the lens, van Leeuwenhoek discovered the microscopic world of living microorganisms. Today, using lasers, spatial light modulators, digital cameras and computers, we study the statistical and fluid mechanics of microswimmers in ways that were unimaginable only 50 years ago. With light we can image swimming bacteria in 3D, apply controllable force fields or sculpt their 3D environment. In addition to shaping the physical world outside cells we can use light to control the internal state of genetically modified bacteria. I will review our recent work with light-bacteria interactions, going from some fundamental problems in the fluid and statistical mechanics of microswimmers to the use of bacteria as propellers for micro-machines or as a "living" paint controlled by light.

SeminarPhysics of LifeRecording

Is there universality in biology?

Nigel Goldenfeld
Massachusetts General Hospital and Brigham & Women's Hospital
Oct 30, 2020

It is sometimes said that there are two reasons why physics is so successful as a science. One is that it deals with very simple problems. The other is that it attempts to account only for universal aspects of systems at a desired level of description, with lower level phenomena subsumed into a small number of adjustable parameters. It is a widespread belief that this approach seems unlikely to be useful in biology, which is intimidatingly complex, where “everything has an exception”, and where there are a huge number of undetermined parameters. I will try to argue, nonetheless, that there are important, experimentally-testable aspects of biology that exhibit universality, and should be amenable to being tackled from a physics perspective. My suggestion is that this can lead to useful new insights into the existence and universal characteristics of living systems. I will try to justify this point of view by contrasting the goals and practices of the field of condensed matter physics with materials science, and then by extension, the goals and practices of the newly emerging field of “Physics of Living Systems” with biology. Specific biological examples that I will discuss include the following: Universal patterns of gene expression in cell biology Universal scaling laws in ecosystems, including the species-area law, Kleiber’s law, Paradox of the Plankton Universality of the genetic code Universality of thermodynamic utilization in microbial communities Universal scaling laws in the tree of life The question of what can be learned from studying universal phenomena in biology will also be discussed. Universal phenomena, by their very nature, shed little light on detailed microscopic levels of description. Yet there is no point in seeking idiosyncratic mechanistic explanations for phenomena whose explanation is found in rather general principles, such as the central limit theorem, that every microscopic mechanism is constrained to obey. Thus, physical perspectives may be better suited to answering certain questions such as universality than traditional biological perspectives. Concomitantly, it must be recognized that the identification and understanding of universal phenomena may not be a good answer to questions that have traditionally occupied biological scientists. Lastly, I plan to talk about what is perhaps the central question of universality in biology: why does the phenomenon of life occur at all? Is it an inevitable consequence of the laws of physics or some special geochemical accident? What methodology could even begin to answer this question? I will try to explain why traditional approaches to biology do not aim to answer this question, by comparing with our understanding of superconductivity as a physical phenomenon, and with the theory of universal computation. References Nigel Goldenfeld, Tommaso Biancalani, Farshid Jafarpour. Universal biology and the statistical mechanics of early life. Phil. Trans. R. Soc. A 375, 20160341 (14 pages) (2017). Nigel Goldenfeld and Carl R. Woese. Life is Physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Cond. Matt. Phys. 2, 375-399 (2011).

statistical mechanics coverage

3 items

Seminar3

Share your knowledge

Know something about statistical mechanics? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how statistical mechanics research is advancing inside Physics of Life.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.